
Nepal 1.0

Reference Manual
Version 1

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 1 of 60

Table of contents
 Version history..3
1 Installation...4
2 Starting the interpreter..4
3 Programs...5
4 Program execution..5
5 Comments...6

5.1 Word comment...6
5.2 Line comment..6
5.3 General comment...6

6 Scopes...7
7 Data model..8

7.1 Life cycle of data objects...8
7.2 State of data objects...8
7.3 Allocation of data objects..8
7.4 Initialisation of data objects...9
7.5 Access of data objects ..10
7.6 Data contents..11
7.7 Data assignments...13
7.8 Data comparison..15
7.9 Data Input and Output..16

7.9.1 Data output..16
7.9.2 Data input..18

8 Types...19
8.1 Inheritance..19
8.2 Small and big types..19
8.3 Access of type procedures and functions...19
8.4 Built-in types..20

8.4.1 Logical data...20
8.4.2 Numerical data (integer)...20
8.4.3 Numerical data (fix point)...21
8.4.4 Characters...22
8.4.5 Strings...23
8.4.6 Polymorphic data..28
8.4.7 Files...29
8.4.8 Directories...32
8.4.9 Lists...33
8.4.10 Hash arrays..35
8.4.11 One-dimensional arrays..37
8.4.12 Two-dimensional arrays..39
8.4.13 Sets..40
8.4.14 Errors...42
8.4.15 Operators...42
8.4.16 Programming codes..42
8.4.17 Arguments...43
8.4.18 System data...43

8.5 User-defined types...46
8.5.1 Modular concept for user-defined types..47
8.5.2 Application-specific extension of user-defined types...47

9 Variables...47
9.1 User-defined variables...47
9.2 Built-in variables..48

10 Procedures and functions..48
10.1 User-defined procedures and functions...48
10.2 Built-in procedures and functions..48

11 Statements...49
11.1 Definition...49
11.2 Inclusion of program files..49

11.2.1 Standard inclusion...49
__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 2 of 60

11.2.2 Module inclusion..49
11.2.3 Application-specific inclusion..50

11.3 Procedural operators..50
11.3.1 Assignments..51
11.3.2 Mathematical operators (for types int, real, str, set and list)...52
11.3.3 Structural operators...52
11.3.4 Data access operator...53
11.3.5 Type access operator...53
11.3.6 Module access operator...53
11.3.7 Definitions of variables and initialisations...53

11.4 Control structures...53
11.4.1 Branches..53
11.4.2 Loops...54
11.4.3 Termination of procedures or functions..54
11.4.4 Termination of Nepal programs..54
11.4.5 Exceptions...55

11.5 Procedure calls...55
11.5.1 General procedures...55
11.5.2 Object procedures...55
11.5.3 Type procedures..55

12 Blocks...55
12.1 Definition...55
12.2 Syntactical sugar..56

13 Expressions...56
13.1 Definition...56
13.2 Access of variables..56

13.2.1 General variables..56
13.2.2 Object variables..57

13.3 Function calls...57
13.3.1 General functions..57
13.3.2 Object functions..57
13.3.3 Type functions..57

13.4 Conditional expressions...58
13.5 Functional operators...58

13.5.1 Boolean operators...58
13.5.2 Operators for comparison...58
13.5.3 Mathematical operators (for types int, real, str, set, and list)..58
13.5.4 Range operators ...58
13.5.5 Data access operator...58
13.5.6 Type access operator...59
13.5.7 Module access operator...59

13.6 Constants..59
14 Glossary..59

Version history

1 Initial version

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 3 of 60

1 Installation

The easiest way to work with the programming language Nepal is to copy the interpreter nepal.exe directly into the
working directory. Then starting the interpreter from the console will execute the addressed Nepal program residing in
the working directory. Section 2 describes how to start the interpreter.

Another possibility is to establish an installation directory, e.g. “C:\nepal”, copy the interpreter nepal.exe into a
subdirectory “bin”, and extend the environment variable “path“ by the absolute path where the executable resides, e.g.
“C:\nepal\bin”. Then the start of the interpreter in any working directory will use the executable from the installation
path.

An initialisation file nepal.sys can be established to define options for the Nepal programs. The location of this file
always corresponds to the directory where the executable nepal.exe resides. The file format is line-oriented. Each line
belongs to a certain program option. Every option has the format “<key> <value>” and may occur multiple times.
Empty lines are ignored and can be used to structure the option list. The following options are available:

i Specify an input file for the Nepal program, e.g. “nepal.in”. The functions for reading data from the
console are redirected to the given input file. The affected system functions are in(), sin(), pin() and
inl(). For a definition of these functions, see section 7.9.2.

ib Like option “i”, but for accessing binary files.
o Specify an output file for the Nepal program, e.g. “nepal.out”. The functions for writing data to the

console are redirected to the given output file. The affected system functions are out(), sout(), pout(),
fout(), fsout(), outl(), soutl(), foutl() and fsoutl(). For a definition of these functions, see section 7.9.1.
If the output file already exists, it will be overwritten.

ob Like option “o”, but for accessing binary files.
O Specify an output file for the Nepal program, e.g. “nepal.out”. In contrast to the option ‘o’, the written

data are appended to the file.
Ob Like option “O”, but for accessing binary files.
a Specify a relevant application for the Nepal program, e.g. “calculator”. The meaning of this option is

described in sections 8.5.2 and 11.2.3.
v The value of this option is empty. It forces the interpreter to print the current program version onto

the console – immediately after starting the interpreter. The options 'o' and 'O' also redirect this
information to the specified output file.

n Specify an include directory for the Nepal program, e.g. “incl” or “../incl”. A program file to be
included will be searched within the given include directories (in the order they occur in file
nepal.sys). The first search always tries to find the file directly within the current working directory.
The second search is done relative to the working directory for all specified include directories. If the
file cannot be found in any include directory, a third search is performed relative to the directory
where the interpreter nepal.exe resides. Section 11.2 describes how to specify an include file within a
Nepal program.

2 Starting the interpreter

The command line

nepal [-i <input file>]
[-ib <binary input file>]
[-o <output file>]
[-ob <binary output file>]

 [-O <output file>]
 [-Ob <binary output file>]
 [-a <application>]
 [-v]
 [-n <include directory>]
 <code file>
 [<argument 1> <argument 2> ...]

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 4 of 60

starts the interpreter for the programming language Nepal from the console. The program code is contained in file
<code file>.

Optionally, an arbitrary number of program arguments can be entered after the code file. The arguments are separated
by space or tab characters. The Nepal program can access these arguments by using the Nepal system functions argc()
and argv() (see section 8.4.18).

Moreover the same program options as provided by the initialisation file nepal.sys can be entered before the code file.
For a description of these options, see section 1. If one of the options “i”, “ib”, “o”, “ob”, “O”, “Ob”, or “a” is already
specified in file nepal.sys, the definition on the command line will overwrite the previous value. If the option “n” is
already specified in file nepal.sys, the include directories from the command line will be merged with the previous list
of directories.

3 Programs
A Nepal program consists of definitions, statements and comments. It is specified by a list of ASCII characters (i.e. by
a string).

Comments are used to document the Nepal programs. They are ignored by the interpreter. The different types of
comments are described in section 5. After elimination of all comments, the remaining Nepal code is a list of
statements and definitions separated by semicolons.

A definition can introduce either new types, variables, procedures or functions. These different types of definitions are
described in sections 8.5, 9.1and 10.1. The definitions are analysed initially by the interpreter. During program
execution they are skipped since they cannot be executed like statements. All definitions are organised in a hierarchy of
scopes as described in section 6.

The statements are executed sequentially according to their occurrence within the Nepal program. The different types
of statements are described in section 11.

4 Program execution
The Nepal interpreter reads the program string from the code file, applies some preprocessing and transforms the
resulting string into a syntax tree. The following preprocessing steps are performed:

• Eliminate all comments
• Eliminate white-space characters (blanks, tabs and end-of-lines) except within character or string constants

(e.g. ' ' or “how are you”) as well as definitions (e.g. “int n” or “func f”)
• Introduce initialisation procedures (cf. section 8.5). E.g. “int n(10)” is replaced by “int n.””(10)”.
• Introduce initialisation functions (cf. section 8.5). E.g. “list:(1,2,3)” is replaced by “list:””(1,2,3)”.
• Replace squared brackets by corresponding procedure/function calls. For example “a[10]” is replaced by

“a.”[]”(10)”.
• Replace sub-strings of the form “)<statement>...;” by “){<statement>...}” and sub-strings of the form

“}<statement>...;” by “}{<statement>...}” (cf. section 12.2)
• Append semicolons after curly brackets if necessary (cf. section 12.2)

Especially end-of-line characters are significant for definitions and strings. For example, the following two statements
are equivalent (str is the built-in type for strings; the sub-string “\n” represents an end-of-line):

str s = “how are\nyou”

and

str
s = “how are
you”

If the resulting string after preprocessing cannot be transformed into a feasible syntax tree, a syntax error is raised and
the program execution is stopped. After a successful generation of the tree, the Nepal interpreter analyses the tree, e.g.
in order to expand included program files (cf. section 11.2) and to generate symbol tables for all scopes (cf. section 6).

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 5 of 60

If the analysis is not successful, an analysis error is raised and the program execution is stopped. After a successful
analysis the statements of the program are interpreted and executed sequentially. System errors during this phase
always generate exceptions which can be caught by suitable catch-statements (cf. Section 11.4.5). Errors specified by
the user are transformed into exceptions by suitable throw-statements. Errors raised during preprocessing, tree
generation and analysis cannot be caught because of their severity.

5 Comments
A Nepal comment always begins with the character ‘#’. Depending on the next character, three different types of
comments are distinguished.

5.1 Word comment

Syntax: #<text>
Conditions: The string <text> contains an arbitrary number of characters of any type except blank or tab.

Moreover the string <text> must not begin with the character ‘(‘. If the character '#' is the very first
character of the (main) program file, the string <text> must not begin with the character '!' (due to the
shebang mechanism, cf. Section 5.2).

Meaning: The string <text> is a comment ending at the next white-space character (blank, tab or end of line).

5.2 Line comment

Syntax: # <text> or
<text> or
#!<text>

Conditions: The next character after ‘#’ is either a blank or tab. If the character '#' is the very first character of the
(main) program file, the next character '!' also introduces a line comment. This supports the shebang
mechanism. The string <text> contains an arbitrary number of characters of any type.

Meaning: The string <text> is a comment ending at the end of the line.

5.3 General comment
Syntax: #(<text 1>#(<text 2>...)#<text n-1>)#<text n>)#
Conditions: The next character after ‘#’ is the character ‘(‘. The comment ends at the next sub-string “)#”. The

string <text i>, for 1 = i...n, contains an arbitrary number of characters of any type except the sub-
strings “#(“ and “)#”. The comments can be nested with unlimited depth.

Meaning: (Nested) comment of arbitrary length.

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 6 of 60

6 Scopes

A scope is a connected part of a Nepal program containing definitions of user-defined types, variables, procedures or
functions (= scope elements). Sections 8.5, 9.1, and 10.1 describe how to specify user-defined types, variables, and
procedures/functions. Each type and variable has got a name. Each procedure and function has got a signature, built
from the name and input arguments. For a certain scope the defined names and signatures have to be unique per type of
definitions.

The following types of scopes exist:
• The outermost scope of a Nepal program (= global scope).
• A block of statements embraced with curly brackets.
• The block of a type definition.
• A block of a procedure/function definition including the input and/or output arguments.
• An included program file.

There is an additional global scope surrounding the outermost scope which contains the built-in types, variables and
procedures/functions.

If a scope contains an need-statement (cf. section 11.2), the definitions of the corresponding scope are added to the
definitions of the current scope. This means that these definitions are accessible from both the current scope and the
scope of the included program file. The addition of definitions to the current scope is applied recursively if the included
files contain further program inclusions.

Scopes can be nested with unlimited depth. There is even no restriction with respect to the type of nested scopes.

The access to types occurs at
• variable definitions, e.g.

o <type name> <variable name>
• input or output arguments of procedures/functions, e.g.

o proc <procedure name> (<type name> <argument name>) { ... }
• inheritance of types, e.g.

o type <type name> (<type name 1>, <type name 2>) { ... }

The access to variables, procedures or functions occurs at
• assignments, e.g.

o <variable name> = <expression>
o <variable name 1> = <variable name 2>

• procedure or function calls, e.g.
o <procedure name>(<variable name>)
o <procedure name>(<function name>())

• expressions, e.g.
o 10*<variable name>
o <function name 1>() + <function name 2>()

Before accessing a scope element, a bottom-up search from the current scope through the surrounding scopes is
performed. The search stops if an element is found with matching name or signature. If the search is not successful –
even after inspecting the global scope, an error is raised. For a certain scope the search is performed always in both
directions – towards the beginning and end of the program. For example, the following statements represent a correct
Nepal program although the definitions of the variable and procedure lie beyond the accessing statement.

n = 10;
p(n);

int n;
proc p (int n) { outl(“n=”,n) }

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 7 of 60

If the bottom-up search reaches the scope of an included program file and the scope element cannot yet be found in this
scope, then the search proceeds directly with the global scope. Otherwise the inclusion of program files would violate
the principal of encapsulation.

If the bottom-up search reaches the scope of a type definition and the scope element cannot yet be found in this scope,
then the scopes of all existing base types are traversed in breath first – depth second order. If the element is not defined
in any base type, the search checks a matching with any built-in procedures/functions available for all types (see
section 8.4.6). If this search is not successful, a matching with any procedure/function of the built-in type any is
investigated since this type is the generic base type of all built-in types (cf. section 8.1). If this search is not successful,
it proceeds with the surrounding scope of the current type definition.

To restrict the search to the scope of certain types, the object access operator “.” or type access operator “:” can be
used. A description of these operators is given in sections 7.5 and 8.3. Applying the operator “:” to the built-in type sys
(cf. section 8.4.18) provides access to the global scope of the Nepal program.

7 Data model

7.1 Life cycle of data objects

When a scope (cf. section 6) is entered during execution of a Nepal program, a (named) data object is created for each
variable of the scope. The type of the object equals to the type of the variable. When a scope is exited during program
execution, the corresponding data objects are destroyed.

Anonymous data objects are created when expressions are evaluated. These objects are destroyed not later than the time
when the statement containing the expression has finished execution.

7.2 State of data objects

After creation of a data object its state is always empty. The built-in object function empty() is used to inquire this state.
After modification of the data object, the initial state can be reached again by using the object procedure clear().

The use of the built-in object procedure del() destroys the data object. It is still accessible, but undefined. The object
function def() is used to check whether an object is defined or not. For the initial state of a data object this function
returns the value true.

The built-in object function type() returns the current type of the addressed object as a string, e.g. “int” for built-in
types or “test” for user-defined types.

7.3 Allocation of data objects

All data objects are stored on the program stack. Nepal does not use heap storage or garbage collection. Therefore,
memory leaks are not possible. To support dynamic (recursive) data structures on the stack, the assignment operator
“~” is introduced to allow for the movement of objects (An example for using the movement operator is given in
section 7.6). If a scope is entered more than once before exiting it (e.g. within recursive procedures), additional data
objects are created and pushed onto the stack. Therefore, the objects from the first traversal are still stored, but not
accessible before exiting the scope for the current traversal.

The allocation of attributes of a data object for a user-defined type depends on the question if the corresponding types
are recursive or not. This property can be either direct or indirect and is determined by the Nepal interpreter
automatically, i.e. no special syntax is necessary. All built-in types are non-recursive. Some examples are given below.

type A { int n } # non-recursive type
type B { int n; B b } # recursive type (direct)
type C { int n; D d } # recursive type (indirect)
type D { int n; C c } # recursive type (indirect)

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 8 of 60

Attributes of data objects corresponding to non-recursive and recursive types are initially allocated as empty and
undefined objects, respectively.

If a data object corresponds to a user-defined type containing base types, their corresponding attributes are allocated in
the same way as for the main type. If a certain base type is inherited multiple times, the allocation is done only once for
this type.

7.4 Initialisation of data objects

Usually the attributes of a data object are initialised as either empty or undefined objects. This depends on the question
if the attributes correspond to non-recursive or recursive types, respectively (cf. section 7.3). It is possible to apply a
basic initialisation for variables of user-defined types if these variables correspond to certain built-in types (bool, char,
int, real, str, oper, file, dir and any). This is achieved by assigning constant values inside the definition of a user-
defined type:

 <type> <var>(<const>)

The basic initialisation is applied to every object of this type just after its creation. The initial state of the object is also
empty (i.e. the built-in procedure empty() yields true). After clearing a non-empty object (using the built-in procedure
clear()), its state becomes empty and the attributes with basic initialisations will contain the initial values again. An
example for this behaviour is given below.

type my_list { # data type for a list

 int n(0); # size of the list; basic initialisation since an empty list

 # always contains zero elements
 ...
}

my_list l; # empty list; attribute n is zero
l.clear(); # now attribute n is still zero

Special object procedures to initialise a data object can be defined inside the definition of a user-defined type:

proc “” { ... } # initialisation procedure without arguments
 proc “” (...){ ... } # initialisation procedure with arguments

These procedures are executed with the statement of the data definition:

<type> <var1>(), <var2>(any a21, ...);

The Nepal interpreter replaces this statement by the following equivalent statement:

 <type> <var1>.””(), <var2>.””(any a21, ...);

An example is given below.

type test { # user-defined type

 int n;
 proc “” { n = 0 }
 proc “” (int xn) { n = xn }
}

test n1; # define variable with no special initialisation
test n2(); # define var. with special initialisation; the attribute is 0
test n3(7); # define var. with special initialisation; the attribute is 7

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 9 of 60

7.5 Access of data objects

The access to the data objects of a certain scope is done via the corresponding variables. An example for accessing a
data object corresponding to a built-in type is given below.

int n = 10; # define variable and assign value
n += 3; # modify variable using arithmetic operator

The variables contained in user-defined types correspond to attributes of the data objects. The operator “.” is used to
access these attributes. Also procedures and functions defined in the corresponding (built-in or user-defined) type are
accessed via this operator. An example is given below.

type test { # user-defined type

 int n;
 proc set_n (int xn) { n = xn }
 }

test t; # define variable of user-defined type
t.n = 10 # modification of attribute by assignment (copy)

 t.set_n(20); # modification of attribute by procedure

The addressed variables, procedures and functions of a data object are searched firstly in the corresponding type and
secondly in the base types due to breath first – depth second order. To restrict the search to the scope of a certain base
type, the type access operator “:” can be used as follows:

<name of object>.<base type>:<name of element>

Here the type itself can also be used as base type.

Inside the procedures and functions of a data object, all types, variables, procedures and functions of the corresponding
type as well as base types are accessible without restriction. The object itself can be accessed via the built-in variable
this as follows:

this
or
this.<name of element>
or
this.<base type>:<name of element>

Note that the usage of variable this will raise an error, if it is used outside of a type definition. An example is given
below.

proc p { this.n = 10 } # error is raised since
 # data object is not accessible

type test { # user-defined type

 int n;
 proc “” { p() } # call external procedure during initialisation
 }

test t(); # define variable with special initialisation

Multiple data objects with multiple elements can be accessed via a single “.”-operator as follows:

(<object_1>,..,<object_m>).(<element_1>,...,<element_n>)

The order of evaluation or execution is <object_1>.<element_1>, <object_1>.<element_2>, …,
object_1>.<element_n>, …, <object_m>.<element_1>, <object_m>.<element_2>, …, object_m>.<element_n>.
__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 10 of 60

7.6 Data contents

The content of a (defined) data object is either a value or a reference. Initially the content of a data object is always a
value. A reference can only be obtained by using the assignment operator “@”. A reference is a kind of a pointer to a
data object. Concatenated references are not possible. However, multiple references pointing to the same object are
allowed. Initially the defined attributes of a data object are values. However, a certain object can be contained only
once as an attribute representing a value. This leads to tree structures with respect to values. To model more complex
data structures like circular lists or general graphs, a mixture of values and references is applied. In the following
example, a graph structure consisting of nodes is established according to Figure 1. Values and references are
represented by solid and dashed arrows, respectively. Both the movement operator “~” and the reference operator “@”
are used.

 # A graph demo

type node { # node of a graph
 int id; # identifier
 node l, r; # left and right sub-graph

 proc “” (int xid) { id = xid } # initialiser
}

node n0(0),n1(1),n2(2),n3(3),n4(4);
n0.l ~ n1; # move n1 to n0.l
n0.r ~ n2; # move n2 to n0.r
n0.l.r ~ n3; # move n3 to n0.l.r
n0.r.l @ n0.l.r; # point n0.r.l to n0.l.r
n0.r.r @ n4; # point n0.r.r to n4

node n5 @ n0.l; # point n5 to n0.l
node n6 @ n0; # point n6 to n0

Figure 1: Graph model

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 11 of 60

4

1 2

3

0

n0 n4n5

undefined object

value
reference

id
l r node object

n6

Clearing the graph n0 by applying the statement “n0.clear()“ makes the data object empty. All attributes corresponding
to non-recursive and recursive types are cleared and destroyed, respectively. The resulting data model is shown in
Figure 2. References pointing to objects to be destroyed are transformed into empty objects (see node n5). Objects
referenced from objects to be destroyed remain unchanged (see node n4).

Figure 2: Graph model after clearing n0

Applying the object procedure del() instead of clear() produces an undefined object n0. The resulting data model is
shown in Figure 3. Also node n6 is transformed into an empty object, since it was pointing to an object to be destroyed.

Figure 3: Graph model after destroying n0

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 12 of 60

4

n0 n4n5

undefined object

value
reference

id
l r node object

empty object

n6

4

n0 n4n5

undefined object

value
reference

id
l r node object

empty object

n6

7.7 Data assignments

Nepal supports assignments of the form

<variable> <assignment_operator> <expression>.

The following assignment operators are available for all built-in and user-defined types:

“=” A (deep) copy of the data object on the right-hand side is assigned to the variable on the left-hand
side.

“@” A reference of the data object on the right-hand side is assigned to the variable on the left-hand side.
“$” An alias of the data object on the right-hand side is assigned to the variable on the left-hand side.
“?” Either a copy or reference is assigned to the variable on the left-hand side, depending on the question

if the data object on the right-hand side contains a value or reference.
“~” The data object on the right-hand side is moved to the variable.

In section 11.3.1 these operators will be described in more detail.

Even multiple assignments using only one statement are possible as described in section 11.3.1.6.

To demonstrate the assignment operators, the example from section 7.6 is reused. Figure 4 shows the result after
applying the statement “node n7 = n0”. As it can be seen, all contained values are copied recursively. The internal
references (here from node 2 to node 3) are also copied completely. Outgoing references (here from node 2 to node 4)
are copied in such a way that they point to the same objects as the original references. Ingoing references (here from
node 5 to node 1 and from node 6 to node 0) are ignored.

Applying the operator “@” was already demonstrated in section 7.6. Applying the operator “?” to node n0 would have
the same effect as the operator “=”, since node n0 contains a value, not a reference.

Finally the statement “node n7 ~ n0” would result in a data model as shown in Figure 5. As it can be seen, all
references point to the same data objects as before the movement. The object n0 is undefined now.

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 13 of 60

 Figure 4: Graph model after copying n0

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 14 of 60

4

1 2

3

0

n0 n4n5

undefined object

value
reference

id
l r node object

empty object

n6

1 2

3

0

n7

Figure 5: Graph model after moving n0

7.8 Data comparison

Nepal supports comparisons of the form

<expression> <comparison_operator> <expression>.

Primarily the following comparison operators are available for all built-in and user-defined types:

“==” Returns true iff the values of the two expressions are identical. The operator corresponds to the
assignment operator “=”: The statement “a=b” always implies “a==b”. This means that the following
conditions must hold for the comparison of user-defined types (cf. section 7.7):
- Attributes containing values must be identical.
- Attributes containing internal references must point to the corresponding objects.
- Attributes containing external references must point to the same objects.

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 15 of 60

4

n0 n4n5

undefined object

value
reference

id
l r node object

empty object

n6

1 2

3

0

n7

“@@” Returns true iff the address of the two expressions are identical. The operator corresponds to the
assignment operator “@”: The statement “a@b” always implies “a@@b”.

“??” Returns true iff the two expressions contain either identical values or identical references. The
operator corresponds to the assignment operator “?”: The statement “a?b” always implies “a??b”.

Additionally the operators „!=“, „!@“, and „!?“ are available. They return „true“ if the corresponding operators return
„false“, and vice versa.

Finally an object function

func “<” (any a)(bool) { ... }

can be defined for any user-defined type. This supports the Nepal system functions min() and max() as well as the
procedures for sorting objects of the built-in types list, args, set, hash, and array. The definition of additional functions
“<=”, “>”, and “>=” is not necessary since they are derived from the function “<” and the built-in operator “==”. An
example is given below.

type test {
 int n;

 proc “” (int xn) { n = xn }
 func “<” (test t)(bool r) { r = n < t.n }

}

test t1(1), t2(2);
outl(t1 < t2); # the output is “true”
outl(min(t1,t2)); # the output is “<1>”.

7.9 Data Input and Output

For the input and output of data, Nepal follows a uniform concept applicable for the three built-in types sys (the
runtime system with access to the console), str (sequence of characters) and file (handle for read and write access to a
file). For a complete list of procedures and functions available for these types, see sections 8.4.18, 8.4.5 and 8.4.7.

7.9.1 Data output
The standard output procedure is

proc out (any v1, v2, ..., vn)

which writes the data v1 through vn to the output medium sequentially. An extra separator between the individual data
can be defined by the type procedure

proc set_out_spc (str s)

Normally no separator is set. To reset the separator the procedure set_out_spc() is used with an empty string. The
current separator can be accessed via the type function

 func get_out_spc (str s)

The output of data with a temporary set separator can be achieved by the procedure

proc sout (str s; any v1, ..., vn) # spaced output

For a formatted output the following type procedure can be used:

proc set_out_fmt (str f)

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 16 of 60

The format string has the form “(+|-<width>)+” where a positive and negative width stands for a right and left
alignment, respectively. For example, the statements

set_out_fmt(“-5+4”);
out(“how”,”are”,”you”)

would yield the output

“how areyou “

As it can be seen, the format is repeated periodically if the number of arguments exceeds the format length. If the
output data does not fit into the format specification, the data will be nevertheless written completely. Using the
extended type procedure

proc set_out_fmt (char c, str f)

an additional filling character c can be set. Normally the filling character is blank. For example, the statements

set_out_fmt(‘*’,“-5+4”);
out(“how”,”are”,”you”)

would yield the output

“how***areyou**“

The current output format can be accessed by the type function

func get_out_fmt (char c, str f)

The output of data with temporary set separator and/or format can be done by the procedures

proc sout (str s; any v1, v2, ..., vn) # spaced output
proc fout (str f; any v1, v2, ..., vn) # formatted output
proc fout (char c; str f; any v1, v2, ..., vn) # formatted output
proc fsout (str f,s; any v1, v2, ..., vn)# formatted, spaced output
proc fsout (char c; str f,s; any v1, v2, ..., vn) # formatted, spaced

output

The usage of these procedures does not change the current setting of the type-specific separator or format.

The output of data with a final end-of-line character ‘\n’ is performed by the procedure

proc outl (any v1, v2, ..., vn) # output with end-of-line

Corresponding procedures with temporary set separator or format are also available (soutl(), foutl(), and fsoutl()).

Writing data objects to a packed representation on the output medium is done by the procedure

proc pout (any v1, v2, ..., vn) # packed output

After writing these data they can be read from the medium by the procedure pin(), see section 7.9.2. The packed input
and output is available for all user-defined types as well as built-in types except file, dir and code.

Nepal supports the writing to an output medium for all built-in types except code. For writing a real argument the
output precision can be set by the type procedure

proc set_out_prec (int prec)

Normally no output precision is set, i.e. the current precision of the internal representation is used. To reset the output
precision the procedure set_out_prec() is used with no argument. For user-defined types a standard output procedure is
used. For example, the following statements
__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 17 of 60

type test {
int n;
str s;
proc “” (int nn; str ss) { n=nn; s=ss }

 }

test t(17,”how are you”);
outl(t)

yield the output

“<17,how are you>”

If a special output is required, a function

 func out (str s)

must be defined for this type. This function transforms the internal data representation into the output string s.

7.9.2 Data input
The standard input procedure is

proc in (any :$ v1, v2, ..., vn)

which reads the data v1 through vn from the input medium sequentially. The operator “:$” specifies a call-by-alias of
the arguments, cf. section 10.1. The reading of the first argument v1 is done until either one of the preset delimiters or
the end of the input medium is reached. For the console, the end of the input medium is represented by the key ESC.
The second argument x2 is read from the input medium after the first delimiter, and so on. If the end of the medium is
reached and there are still arguments to be read, these arguments remain unchanged. The delimiters for reading are set
by the type procedure

proc set_in_spc (str s1, s2, ..., sn)

Normally no delimiter is set. To reset the delimiters the procedure set_in_spc() is used with no arguments. The current
delimiters can be accessed via the type function

 func get_in_spc (str s1, s2, ..., sn)

The input of data with temporary set delimiters can be achieved by the procedure

proc sin (str s1, ..., sm; any :$ v1, ..., vn) # spaced input

Here the distinction between arguments si, i = 1...m, and vj, j = 1...n, is made according to the variability of the
transferred data. All data embodied by variables (from right to left) are assigned to the arguments v1 to vn. The
remaining data (left of the left-most variable data) are assigned to the arguments s1 to sm. The use of procedure sin()
does not change the current setting of the type-specific delimiters.

Reading a data object until the next end-of-line (character ‘\n’) or the end of the medium can be done by the procedure

proc inl (any :$ v) # read until end-of-line

Reading data objects from a packed representation on the input medium is done by the procedure

proc pin (any :$ v1, v2, ..., vn) # packed input

Before reading these data they have to be written to the medium by the procedure pout(), see section 7.9.1. The packed
input and output is available for all user-defined types as well as built-in types except file, dir and code.

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 18 of 60

The procedures in(), sin(), inl(), and pin() also have corresponding functions with a boolean return value. These
functions yield true if all input arguments have been read successfully.

Nepal supports the reading from an input medium for the built-in types bool, int, real, char, str, and any. Reading a
any argument always results in a string representation (of type str). To read an object of a user-defined type from an
input medium, a procedure

 proc in (str s)

must be defined for this type. This procedure transforms the input string s into the internal data representation.

The reading position can be reset to the beginning of the medium by the procedure

proc in_reset

This procedure is available for the types file and str, but not for the console. It is executed implicitly for all procedures
and functions with write access (e.g. out()).

8 Types

8.1 Inheritance

The type system of Nepal supports multiple inheritance, i.e. a user-defined type can inherit all elements from one or
more other user-defined types (the so-called “base types”). Multiple inheritance of a certain base type is eliminated
automatically. Cycles within inherited types are not allowed. The search order for addressed elements of a type is
“breath first – depth second”.

Built-in types cannot be inherited by user-defined types, with one exception: The built-in type any represents the
generic base type which is inherited by all other built-in types and all user-defined types. Therefore, the procedures and
functions of type any can be used by objects of any type. Section 8.4.6 describes the elements of type any in more
detail.

8.2 Small and big types

Nepal makes a distinction between small and big types.

When using data of small types as input arguments of procedures or functions, these data are always copied. When
using these data as keys of hash arrays, they are compared with respect to their value. The following built-in types are
small: bool, int, real, char, str, oper and error. Small user-defined types are specified with the keyword smalltype.
When using constant / variable data of big types as input arguments of procedures or functions, the value / reference of
these data is transferred. When using these data as keys of hash arrays or elements of sets, they are compared with
respect to their value / (memory) address. The following built-in types are big: list, set, hash, array, array2, code, file,
dir, any and args. Big user-defined types are specified with the keyword bigtype.

A more detailed description of the calling conventions for procedures and functions is given in section 10.1.

8.3 Access of type procedures and functions

Procedures and functions of a type can be called directly using the type access operator “:”:

<type name>:<name of procedure or function>

Note that a corresponding data object does not exist for this call when it is used outside of a type definition. Therefore,
accessing a variable of the type will raise an error. An example is given below.

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 19 of 60

bigtype test { # user-defined type

 int n;
 proc “” { n = 0 } # initialisation procedure
 }

test:””(); # error is raised since object does not exist

8.4 Built-in types

In the following sections the elements of all built-in types are described in more detail. The used groups have the
following meaning:

• Object procedures/functions Procedures/functions of a type which can be applied only by a certain data
object. They use other procedures or functions of the object or do access
attributes of the object.

• Type procedures/functions Procedures/functions of a type which can be applied by any data object of
this type as well as without a concrete object. They do not use object
procedures or functions and do not access object attributes.

• Procedural object operators Object procedures with zero or one input argument
which can be applied only by a certain data object and are represented
by a special symbol, e.g. “+=” for addition/concatenation. The first
argument of the operator is the object itself.

• Functional operators Functions with one or two input arguments, represented by a special
symbol, e.g. “==” for comparison of two data objects.

8.4.1 Logical data

Syntax: bool
Meaning: Logical value.
Constants: true, false
Object procedures:

”” (bool a) Initialisation procedure. Object is set to a copy of a.
Functional operators:

“!” (bool a)(bool) Returns the logical negation of value a.
“||” (bool a,b)(bool) Returns true iff a or b is true. b is not evaluated if a is

true.
“&&” (bool a,b)(bool) Returns true iff a and b is true. b is not evaluated if a is

false.

8.4.2 Numerical data (integer)

Syntax: int
Meaning: Numerical integer value of arbitrary length.
Constants: [+|-](0-9)+
Type functions:

random (int a,b) Returns a random number between a and b.
Object procedures:
 “” (int a) Initialisation procedure. Object is set to a copy of a.
Object functions:

fac (int) Returns factorial of object.
binom (int a)(int) Returns “object choose a” (binomial coefficient).
gcd (int a)(int) Returns greatest common divisor of object and a.

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 20 of 60

lcm (int a)(int) Returns least common multiple of object and a.
prime (bool) Returns true iff object is a prime number
abs (int) Returns absolute value of object.
sgn (int) Returns sign of object (either +1, 0, or -1).
real (real) Transforms object into a real value (all digits right of

decimal point are all zero).
Procedural object operators:

“-“ Negates the object.
“+=” (int a) Adds a to object.
“-=” (int a) Subtracts a from object.
“*=” (int a) Multiplies object with a.
“/=” (int a) Divides object by a.
“%=” (int a) Sets object to remainder when dividing object by a.
“^=” (int a) Sets object to the power of a.

Functional operators:
“+” (int a,b)(int) Returns sum of a and b.
“-“ (int a,b)(int) Returns difference of a and b.
“*” (int a,b)(int) Returns product of a and b.
“/” (int a,b)(int) Returns quotient of a and b.
“%” (int a,b)(int) Returns remainder when dividing a by b (modulo

operator).
“^” (int a,b)(int) Returns a to the power of b.
“<” (int a,b)(bool) Returns true iff a is smaller than b.
“>” (int a,b)(bool) Returns true iff a is greater than b.
“<=” (int a,b)(bool) Returns true iff a is smaller than or equal to b.
“>=” (int a,b)(bool) Returns true iff a is greater than or equal to b.
“..” (int a,b)(list) Returns the sequence of integers from a to b.
“.:” (int a,b)(list) Returns the increasing sequence of integers from a to b. If

a > b, the sequence is empty.
“:.” (int a,b)(list) Returns the decreasing sequence of integers from a to b.

If a < b, the sequence is empty.

8.4.3 Numerical data (fix point)
Syntax: real
Meaning: Numerical real value with arbitrary number of digits left of decimal point and fixed number of digits

right of decimal point (= precision). Normally the precision is 8. It can be modified with the type
procedure set_prec().

Constants: <int>.<int >= 0>, <int>[.<int >= 0>]e|E<int>,
[+|-].<int >= 0>e|E<int>

Type procedures:
set_prec (int) Sets the precision of real numbers. This precision is valid

for all subsequent initialisations and calculations
involving real numbers.

set_out_prec (int) Sets the precision of real numbers for all subsequent
output procedures onto the output medium.

set_out_prec Resets the precision of real numbers for all subsequent
output procedures onto the output medium. This means
that the output of a real number corresponds to the
current representation of the number. Normally the output
precision is reset.

Type functions:
get_prec (int) Returns the current precision for real numbers.
get_out_prec (int) Returns the current output precision for real numbers. If

the precision is reset, an empty int value is returned.

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 21 of 60

pi (real) Returns the circle number.
Object procedures:

“” (real a) Initialisation procedure. Object is set to a copy of a.
Object functions:

sqrt (real) Returns square root of object.
sin (real) Returns sine of object.
cos (real) Returns cosine of object.
tan (real) Returns tangent of object.
cot (real) Returns cotangent of object.
exp (real) Returns exponential function of object.
ln (real) Returns natural logarithm of object.
ld (real) Returns logarithm of object for base 2.
lg (real) Returns logarithm of object for base 10.
log (real a)(real) Returns logarithm of object for base a.
pot (real a)(real) Returns object to the power of a.
crt (real) Returns cubic root of object.
root (real a)(real) Returns a-th root of object.
sinh (real) Returns hyperbolic sine of object.
cosh (real) Returns hyperbolic cosine of object.
tanh (real) Returns hyperbolic tangent of object.
coth (real) Returns hyperbolic cotangent of object.
arcsin (real) Returns inverse sine of object.
arccos (real) Returns inverse cosine of object.
arctan (real) Returns inverse tangent of object.
arccot (real) Returns inverse cotangent of object.
arsinh (real) Returns inverse hyperbolic sine of object.
arcosh (real) Returns inverse hyperbolic cosine of object.
artanh (real) Returns inverse hyperbolic tangent of object.
arcoth (real) Returns inverse hyperbolic cotangent of object.
abs (real) Returns absolute value of object.
sgn (int) Returns sign of object (either +1, 0, or -1).
int (int) Transforms object into an integer value (truncate digits

right of decimal point).
Procedural object operators:

“-“ Negates the object.
“+=” (int|real a) Adds a to object.
“-=” (int|real a) Subtracts a from object.
“*=” (int|real a) Multiplies object with a.
“/=” (int|real a) Divides object by a.

Functional operators:
“+” (real a,b)(real) Returns sum of a and b.
“-“ (real a,b)(real) Returns difference of a and b.
“*” (real a,b)(real) Returns product of a and b.
“/” (real a,b)(real) Returns quotient of a and b.
“<” (real a,b)(bool) Returns true iff a is smaller than b.
“>” (real a,b)(bool) Returns true iff a is greater than b.
“<=” (real a,b)(bool) Returns true iff a is smaller than or equal to b.
“>=” (real a,b)(bool) Returns true iff a is greater than or equal to b.

8.4.4 Characters
Syntax: char
Meaning: Character (Ascii).
Constants: '(a-z)', '(A-Z)', '(0-9)', '-', '+', ..., '\n' (end-of-line), '\t'

(horizontal tab), ‘\f’ (form feed), ‘\v’ (vertical tab), '\\'

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 22 of 60

(backslash), '\'' (apostrophe), '\"' (quotation mark), '\0' (null
character)

Object procedures:
“” (char a) Initialisation procedure. Object is set to a copy of a.
toupper Transforms the object into an upper-case character.
tolower Transforms the object into a lower-case character.

Object functions:
isupper (bool) Returns true iff object is an upper-case character.
islower (bool) Returns true iff object is a lower-case character.
isalpha (bool) Returns true iff object is an alpha-numeric character.
isdigit (bool) Returns true iff object is a character between ‘0’ and ‘9’.

Functional operators:
“<” (char a,b)(bool) Returns true iff a is smaller than b.
“>” (char a,b)(bool) Returns true iff a is greater than b.
“<=” (char a,b)(bool) Returns true iff a is smaller than or equal to b.
“>=” (char a,b)(bool) Returns true iff a is greater than or equal to b.
“..” (char a,b)(list) Returns the sequence of characters from a to b.
“.:” (char a,b)(list) Returns the increasing sequence of characters from a to b.

If a > b, the sequence is empty.
“:.” (char a,b)(list) Returns the decreasing sequence of characters from a to

b. If a < b, the sequence is empty.

8.4.5 Strings
Syntax: str
Meaning: Sequence of (Ascii) characters with arbitrary length.
Constants: "(<char>)+"
Type procedures:

set_in_spc (str s1, ...) Sets the delimiter(s) for the reading functions, e.g. in()
and inl(). Normally no delimiter is defined.

set_in_spc Resets the delimiters for the reading functions, e.g. in()
and inl().

set_out_spc (str s) Sets the separator for the writing functions, e.g. out() and
outl(). Normally the separator is empty.

set_out_fmt (str f) Sets the format for the writing functions, e.g. out() and
outl().The filling character is set to blank (‘ ‘). Normally
the format is empty.

set_out_fmt (char c; str f) Sets the format f and filling character c for the writing
functions, e.g. out() and outl(). Normally the filling
character is blank and the format is empty.

Type functions:
“” (any, ...)(str) Initialisation function. Writes the arguments sequentially

to the string to be returned. The current format and
separator (set by set_out_fmt() and set_out_spc() for type
str) are considered accordingly.

get_in_spc (str s1, ...) Returns the current delimiter(s) for the reading functions,
e.g. in() and inl().

get_out_spc (str s) Returns the current separator for the writing functions,
e.g. out() and outl().

get_out_fmt (char c; str f) Returns the current format f and filling character c for the
writing functions, e.g. out() and outl().

Object procedures:
“” (any, ...) Initialisation procedure. Clears the string and writes the

arguments sequentially to the string. The current format
and separator (set by set_out_fmt() and set_out_spc()) are
considered accordingly.

set (int i1,char c1, ...) Replaces character at index i1 by value c1 (and so on).
The index (>= 0) is counted from the beginning of the
string.

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 23 of 60

Set (int i1,char c1, ...) Replaces character at index i1 by value c1 (and so on).
The index (>= 0) is counted backwards from the end of
the string.

setp (int i,j; str s) Replaces the sub-string from index i to index j by string s.
The index (>= 0) is counted from the beginning of the
string.

Setp (int i,j; str s) Replaces the sub-string from index i to index j by string s.
The index (>= 0) is counted backwards from the end of
the string.

repl (str a,b) Replaces the sub-string a by sub-string b (only once). The
search is done from the beginning of the string.

Repl (str a,b) Replaces the sub-string a by sub-string b (only once). The
search is done backwards from the end of the string.

repl_all (str a,b) Replaces the sub-string a by sub-string b (multiple times).
The search is done from the beginning of the string.

Repl_all (str a,b) Replaces the sub-string a by sub-string b (multiple times).
The search is done backwards from the end of the string.

in (any :$ v1, ...) Reads the arguments sequentially from the string. The
current delimiters (set by set_in_spc()) are considered
accordingly. If the string is empty or the end of the string
is reached, the procedure has no effect.

sin (str s1,...; any :$ v1,...) Reads the arguments v1,... sequentially from the
string using the delimiters s1,... . The delimiters used for
procedure in() remain unchanged. If the string is empty or
the end of the string is reached, the procedure has no
effect.

inl (any :$ v) Reads argument v until character ‘\n’ or the end of the
string. If the string is empty or the end of the string is
reached, the procedure has no effect.

pin (any :$ v1, ...) Reads the packed arguments sequentially from the string.
Corresponds to procedure pout(). If the string is empty or
the end of the string is reached, the procedure has no
effect.

out (any v1, ...) Writes the arguments sequentially to the string. The
current format and separator (set by set_out_fmt() and
set_out_spc()) are considered accordingly.

outl (any v1, ...) Writes the arguments sequentially to the string and finally
appends the character ‘\n’. The current format and
separator (set by set_out_fmt() and set_out_spc()) are
considered accordingly.

sout (str s; any v1, ...) Writes the arguments sequentially to the string using the
separator s. The current format (set by set_out_fmt()) is
considered accordingly. The separator used for
procedures out() and outl() remains unchanged.

soutl (str s; any v1...) Writes the arguments sequentially to the string using the
separator s, and finally appends the character ‘\n’. The
current format (set by set_out_fmt()) is considered
accordingly. The separator used for procedures out() and
outl() remains unchanged.

fout (str f; any v1, ...) Writes the arguments sequentially to the string using the
format f. The current separator (set by set_out_spc()) is
considered accordingly. The format used for procedures
out() and outl() remains unchanged.

foutl (str f; any v1...) Writes the arguments sequentially to the string using the
format f, and finally appends the character ‘\n’. The
current space (set by set_out_spc()) is considered
accordingly. The format used for procedures out() and
outl() remains unchanged.

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 24 of 60

fout (char c; str f; any v1, ...) Writes the arguments sequentially to the string
using the format f and filling character c. The current
separator (set by set_out_spc()) is considered
accordingly. The filling character and format used for
procedures out() and outl() remain unchanged.

foutl (char c; str f; any v1...) Writes the arguments sequentially to the string
using the format f and filling character c, and finally
appends the character ‘\n’. The current separator (set by
set_out_spc()) is considered accordingly. The filling
character and format used for procedures out() and outl()
remain unchanged.

fsout (str f; str s; any v1, ...) Writes the arguments sequentially to the string
using the format f and separator s. The format and
separator used for procedures out() and outl() remain
unchanged.

fsoutl (str f; str s; any v1...) Writes the arguments sequentially to the string
using the format f and separator s, and finally appends the
character ‘\n’. The format and separator used for
procedures out() and outl() remain unchanged.

fsout (char c; str f; str s; any v1, ...) Writes the arguments
sequentially to the string using the format f, filling
character c and separator s. The filling character, format
and separator used for procedures out() and outl() remain
unchanged.

fsoutl (char c; str f; str s; any v1...) Writes the arguments sequentially to the
string using the format f, filling character c, and separator
s, and finally appends the character ‘\n’. The filling
character, format and separator used for procedures out()
and outl() remain unchanged.

pout (any v1, ...) Writes the arguments sequentially to the string using a
packed format. Corresponds to procedure pin().

in_reset Reset the reading position to the beginning of the string
(for all reading procedures and functions). This procedure
is executed implicitly for all procedures / functions with
write access.

toupper Transforms all characters of the string into upper-case
characters.

tolower Transforms all characters of the string into lower-case
characters.

ins0 (str s1,...) Appends the arguments sequentially at the beginning of
the string.

Ins0 (str s1,...) Appends the arguments sequentially at the end of the
string.

ins (int i1; int s1; ...) Inserts the argument s1 left of the i1-th character (and so
on). The index (>= 0) is counted from the beginning of
the string.

Ins (int i1; int s1; ...) Inserts the argument s1 right of the i1-th character (and so
on). The index (>= 0) is counted backwards from the end
of the string.

del0 Removes the first character from the string.
Del0 Removes the last character from the string.
delp (int i,j) Removes the sub-string from index i to index j. The index

(>= 0) is counted from the beginning of the string.
Detp (int i,j) Removes the sub-string from index i to index j. The index

(>= 0) is counted backwards from the end of the string.
del (int i1, ...) Removes the character at index i1 (and so on). The index

(>= 0) is counted from the beginning of the string.
Del (int i1, ...) Removes the character at index i1 (and so on). The index

(>= 0) is counted backwards from the end of the string.
__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 25 of 60

flip Inverts the string.
chop Removes all white-space characters (‘ ‘, ‘\t’, ‘\f’, ‘\v’,

‘\n’, '\0') at the beginning of the string.
Chop Removes all white-space characters (‘ ‘, ‘\t’, ‘\f’, ‘\v’,

‘\n’, '\0') at the end of the string.
chop (str s1, ...) Removes all arguments at the beginning of the string.
Chop (str s1, ...) Removes all arguments at the end of the string.
for (char :$ c; code C) Iterates over all characters c of the string (using copy

assignment) and executes code C for each character.
For (char :$ c; code C) Iterates over all characters c of the string (traversing it

backwards and using copy assignment) and executes code
C for each character.

Object functions:
size (int) Returns current length of string.
get0 (char) Returns first character of string.
Get0 (char) Returns last character of string.
get (int i1, ...)(char c1, ...) Returns character with index i1 (and so on).
Get (int i1, ...)(char c1, ...) Returns character with index i1 (and so on). The

index (>= 0) is counted backwards from the end of the
string.

str (int i1, ...)(str) Returns a string containing character with index i1 (and
so on).

getp (int i, j)(str) Returns sub-string from index i to index j.
Getp (int i, j)(str) Returns sub-string from index i to index j. The index (>=

0) is counted backwards from the end of the string.
find_str (str s1, ...)(args) Searches sub-string s1 (and so on) from the

beginning of the string and returns first position (one
output argument). The index (>= 0) is counted from the
beginning of the string. Returns zero arguments, if no
sub-string is found.

Find_str (str s1, ...)(args) Searches sub-string s1 (and so on) from the end
of the string and returns first position (one output
argument). The index (>= 0) is counted from the
beginning of the string. Returns zero arguments, if no
sub-string is found.

find_str_all (str s1, ...)(args) Searches sub-string s1 (and so on) from the
beginning of the string and returns all found positions.
The indices (>= 0) are counted from the beginning of the
string.

Find_str_all (str s1, ...)(args) Searches sub-string s1 (and so on) from the end
of the string and returns all found positions. The indices
(>= 0) are counted from the beginning of the string.

find (any :$ v; code C)(args) Searches for the first character where code C
evaluates to the boolean value “true” and returns its
position. The index (>= 0) is counted from the beginning
of the string. Returns an empty list of
arguments if no character was found. For each character
of the string a copy is assigned to argument v. During this
iteration the code evaluation is done for the currently
assigned character.

Find (any :$ v; code C)(args) Searches for the first character where code C
evaluates to the boolean value “true” and returns its
position. The index (>= 0) is counted from the beginning
of the string. The search is done backwards from the end
of the string. Returns an empty list of
arguments if no character was found. For each character
of the string a copy is assigned to argument v. During this
iteration the code evaluation is done for the currently
assigned character.

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 26 of 60

find_all (any :$ v; code C)(args) Searches for all characters where code
C evaluates to the boolean value “true” and returns their
positions. The indices (>= 0) are counted from the
beginning of the string. Returns an empty list of
arguments if no character was found. For each character
of the string an alias is assigned to argument v. During
this iteration the code evaluation is done for the currently
assigned character.

Find_all (any :$ v; code C)(args) Searches for all characters where code C evaluates
to the boolean value “true” and returns their positions.
The indices (>= 0) are counted from the beginning of the
string. The search is done backwards from the end of the
string. Returns an empty list of arguments if no character
was found. For each character of the string a copy is
assigned to argument v. During this iteration the
code evaluation is done for the currently assigned
character.

 in (any :$ v1, ...)(bool) Reads the arguments sequentially from the string. The
current delimiters (set by set_in_spc()) are considered
accordingly. If the string is empty or the end of the string
is reached, the procedure has no effect. Returns true iff all
arguments are read successfully.

sin (str s1,...; any :$ v1,...)(bool) Reads the arguments v1,...
sequentially from the string using the delimiters s1,... .
The delimiters used for procedure in() remain unchanged.
If the string is empty or the end of the string is reached,
the procedure has no effect. Returns true iff all arguments
are read successfully.

inl (any :$ v)(bool) Reads argument v until character ‘\n’ or the end of the
string. If the string is empty or the end of the string is
reached, the procedure has no effect. Returns true iff the
arguments is read successfully.

pin (any :$ v1, ...)(bool) Reads the packed arguments sequentially from the string.
Corresponds to procedure pout(). If the string is empty or
the end of the string is reached, the procedure has no
effect. Returns true iff all arguments are read
successfully.

split (str v1, ...) Splits the string into sub-strings using all white-space
characters (‘ ‘, ‘\t’, ‘\f’, ‘\v’, ‘\n’, '\0') as delimiters.

split (str s1, ...)(str v1, ...) Splits the string into sub-strings using the string
s1 (and so on) as delimiters.

anysplit (int|real|char|str v1, ...)Splits the string into sub-strings using all
white-space characters (‘ ‘, ‘\t’, ‘\f’, ‘\v’, ‘\n’, '\0') as
delimiters. Then transforms the sub-strings into
integer, real or character values if possible. Otherwise
strings are returned.

anysplit (str s1, ...)(int|real|char|str v1, ...) Splits the string into
sub-strings using the string s1 (and so on) as delimiters.
Then transforms the sub-strings into integer, real or
character values if possible. Otherwise strings are
returned.

args (char c1, ...) Splits the string into individual characters.
int (int) Transforms the string into integer value if possible.

Otherwise a system error is raised.
real (real) Transforms the string into real value if possible.

Otherwise a system error is raised.
isupper (bool) Returns true iff every character of the string is an upper-

case character.

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 27 of 60

islower (bool) Returns true iff every character of the string is a lower-
case character.

isalpha (bool) Returns true iff every character of the string is an
alphanumeric character.

isdigit (bool) Returns true iff every character of the string is a character
between ‘0’ and ‘9’.

isint (bool) Returns true iff the string can be transformed into an
integer value.

isreal (bool) Returns true iff the string can be transformed into a
real value.

for (char :$ c; code C)(args) Iterates over all characters c of the string (using
copy assignment) and returns the evaluated code C for
each character.

For (char :$ c; code C)(args) Iterates over all characters c of the string
(traversing it backwards and using copy assignment) and
returns the evaluated code C for each character.

Procedural object operators:
“+=” (str a) Appends a to object.

Functional operators:
“+” (str a,b)(str) Returns concatenation of a and b.
“<” (str a,b)(bool) Returns true iff a is smaller than b.
“>” (str a,b)(bool) Returns true iff a is greater than b.
“<=” (str a,b)(bool) Returns true iff a is smaller than or equal to b.
“>=” (str a,b)(bool) Returns true iff a is greater than or equal to b.

8.4.6 Polymorphic data
Syntax: any
Meaning: Objects of this type can store data of arbitrary type. Base type for all other built-in types and all user-

defined types.
Type functions:

“” (any, ...)(any, ...) Initialisation function. Returns list of (constant) values
from list of (constant or variable) arguments.

Object procedures:
del Destroys the current object. The object is no longer

defined, i.e. function def() returns true now.
clear Clears the current object. The function empty() returns

true now.
proc (str type, name; any v1, ...) Calls the object procedure “name” of base

type “type” with the arguments v1 (and so on). If the type
is empty, every base type (including the current type) is
considered.

func (str type, name; any v1, …) Calls the object function “name” of base
type “type” with the arguments v1 (and so on) and moves
the result into the current object. If the type is empty,
every base type (including the current type) is considered.

Object functions:
def (bool) Returns true iff current object is defined.
empty (bool) Returns true iff current object is empty. For user-defined

types, a comparison is made to a dummy object for which
a standard allocation and the default initialisation (cf.
section 8.5) have been applied.

type (str) Returns the type name of the current object.
func (str type, name; any v1, ...)(any, ...) Calls the object function

“name” of base type “type” with the arguments v1 (and
so on). If the type is empty, every base type (including
the current type) is considered.

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 28 of 60

proc (str type, name; any v1, ...)(any) Makes a copy of the current
object, calls the object procedure “name” of base type
“type” with the arguments v1 (and so on) for the copied
object, and returns this object. If the type is empty, every
base type (including the current type) is considered.

Functional operators:
“==” (any a,b)(bool) Compares the value of a and b. Returns true iff a and b

are identical.
“!=” (any a,b)(bool) Compares the value of a and b. Returns true iff a and b

 are not identical.
“@@” (any a,b)(bool) Compares the address of a and b. Returns true iff the

address of a equals to the address of b.
“!@” (any a,b)(bool) Compares the address of a and b. Returns true iff the

address of a differs from the address of b.
“??” (any a,b)(bool) Compares the value or address of a and b. Returns true

iff a and b contain identical values or references.
“!?” (any a,b)(bool) Compares the value or address of a and b. Returns true iff

a and b do not contain identical values or references.

8.4.7 Files
Syntax: file
Meaning: File handle for read and write access.
Type procedures:

set_in_spc (str v1, ...) Sets the delimiter(s) for the reading functions, e.g. in()
and inl(). Normally no delimiter is defined.

set_in_spc Resets the delimiters for the reading functions, e.g. in()
and inl().

set_out_spc (str s) Sets the separator for the writing functions, e.g. out() and
outl(). Normally the separator is empty.

set_out_fmt (str f) Sets the format for the writing functions, e.g. out() and
outl().The filling character is set to blank (‘ ‘). Normally
the format is empty.

set_out_fmt (char c; str f) Sets the format f and filling character c for the writing
functions, e.g. out() and outl(). Normally the filling
character is blank and the format is empty.

Type functions:
“” (str)(file) Initialisation function. Returns a handle for a file with the

specified name.
get_in_spc (str s1, ...) Returns the current delimiter(s) for the reading functions,

e.g. in() and inl().
get_out_spc (str s) Returns the current separator for the writing functions,

e.g. out() and outl().
get_out_fmt (char c; str f) Returns the current format f and filling character c for the

writing, e.g. functions out() and outl().
Object procedures:

“” (str f) Specifies the name of the file with f.
“” (str f, m) Specifies the name of the file with f and opens the file

with mode m (“i” for reading access, “o” for writing
access, “O” for appending access, “ib” for reading access
to binary files, “ob” for writing access to binary files,
“Ob” for appending access to binary files).

open (str m) Opens the file with mode m (“i” for reading access, “o”
for writing access, “O” for appending access, “ib” for
reading access to binary files, “ob” for writing access to
binary files, “Ob” for appending access to binary files).

close Close any open stream.
remove Removes file.

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 29 of 60

move (file f) Renames file to file f.
make Creates the file.
copy (file f) Copies file to target file f.
in (any :$ v1, ...) Reads the arguments sequentially from the file. The

current delimiters (set by set_in_spc()) are considered
accordingly. If the file is empty or the end of the file is
reached, the procedure has no effect.

sin (str s1,...; any :$ v1,...) Reads the arguments v1,... sequentially
from the file using the delimiters s1,... . The delimiters
used for procedure in() remain unchanged. If the file is
empty or the end of the file is reached, the procedure has
no effect.

inl (any :$ v) Reads argument v until character ‘\n’ or the end of the
file. If the file is empty or the end of the file is reached,
the procedure has no effect.

pin (any :$ v1, ...) Reads the packed arguments sequentially from the file.
Corresponds to procedure pout(). If the file is empty or
the end of the file is reached, the procedure has no effect.

out (any, ...) Writes the arguments sequentially to the file. The current
format and separator (set by set_out_fmt() and
set_out_spc()) are considered accordingly.

outl (any, ...) Writes the arguments sequentially to the file and finally
appends the character ‘\n’. The current format and
separator (set by set_out_fmt() and set_out_spc()) are
considered accordingly.

sout (str s; any v1, ...) Writes the arguments sequentially to the file using the
separator s. The current format (set by set_out_fmt()) is
considered accordingly. The separator used for
procedures out() and outl() remains unchanged.

soutl (str s; any v1...) Writes the arguments sequentially to the file using the
separator s, and finally appends the character ‘\n’. The
current format (set by set_out_fmt()) is considered
accordingly. The separator used for procedures out() and
outl() remains unchanged.

fout (str f; any v1, ...) Writes the arguments sequentially to the file using the
format f. The current separator (set by set_out_spc()) is
considered accordingly. The format used for procedures
out() and outl() remains unchanged.

foutl (str f; any v1...) Writes the arguments sequentially to the file using the
format f, and finally appends the character ‘\n’. The
current separator (set by set_out_spc()) is considered
accordingly. The format used for procedures out() and
outl() remains unchanged.

fout (char c; str f; any v1, ...) Writes the arguments sequentially to the file
using the format f and filling character c. The current
separator (set by set_out_spc()) is considered
accordingly. The filling character and format used for
procedures out() and outl() remain unchanged.

foutl (char c; str f; any v1...) Writes the arguments sequentially to the file
using the format f and filling character c, and finally
appends the character ‘\n’. The current separator (set by
set_out_spc()) is considered accordingly. The filling
character and format used for procedures out() and outl()
remain unchanged.

fsout (str f; str s; any v1, ...) Writes the arguments sequentially to the file
using the format f and separator s. The format and
separator used for procedures out() and outl() remain
unchanged.

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 30 of 60

fsoutl (str f; str s; any v1...) Writes the arguments sequentially to the file
using the format f and separator s, and finally appends the
character ‘\n’. The format and separator used for
procedures out() and outl() remain unchanged.

fsout (char c; str f; str s; any v1, ...) Writes the arguments
sequentially to the file using the format f, filling character
c and separator s. The filling character, format and
separator used for procedures out() and outl() remain
unchanged.

fsoutl (char c; str f; str s; any v1...) Writes the arguments sequentially to the
file using the format f, filling character c, and separator s,
and finally appends the character ‘\n’. The filling
character, format and separator used for procedures out()
and outl() remain unchanged.

pout (any v1, ...) Writes the arguments sequentially to the file using a
packed format. Corresponds to procedure pin().

in_reset Reset the reading position to the beginning of the file (for
all reading procedures and functions). This procedure is
executed implicitly for all procedures / functions with
write access.

for (char :$ c; code C) Iterates over all characters c of the file (using copy
assignment) and executes code C for each line.

For (char :$ c; code C) Iterates over all characters c of the file (traversing it
backwards and using copy assignment) and executes code
C for each line.

for (str :$ s; code C) Iterates over all lines s of the file (using copy assignment)
and executes code C for each line.

For (str :$ s; code C) Iterates over all lines s of the file (traversing it backwards
and using copy assignment) and executes code C for each
line.

Object functions:
exists (bool) Returns true iff file exists.
size (int) Returns size of file (in bytes).
cmp (file f)(bool) Compares content of file with content of file f. Returns

true iff contents are identical.
in (any :$ v1, ...)(bool) Reads the arguments sequentially from the file. The

current delimiters (set by set_in_spc()) are considered
accordingly. If the file is empty or the end of the file is
reached, the procedure has no effect. Returns true iff all
arguments are read successfully.

sin (str s1,...; any :$ v1,...)(bool) Reads the arguments v1,...
sequentially from the file using the delimiters s1,... . The
delimiters used for procedure in() remain unchanged. If
the file is empty or the end of the file is reached, the
procedure has no effect. Returns true iff all arguments are
read successfully.

inl (any :$ v)(bool) Reads argument v until character ‘\n’ or the end of the
file. If the file is empty or the end of the file is reached,
the procedure has no effect. Returns true iff the argument
is read successfully.

pin (any :$ v1, ...)(bool) Reads the packed arguments sequentially from the file.
Corresponds to procedure pout(). If the file is empty or
the end of the file is reached, the procedure has no effect.
Returns true iff all arguments are read successfully.

split (str v1, ...) Splits the file into sub-strings using all white-space
characters (‘ ‘, ‘\t’, ‘\f’, ‘\v’, ‘\n’, '\0') as delimiters.

split (str s1, ...)(str v1, ...) Splits the file into sub-strings using the string s1
(and so on) as delimiters.

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 31 of 60

anysplit (int|real|char|str v1, ...)Splits the file into sub-strings using all
white-space characters (‘ ‘, ‘\t’, ‘\f’, ‘\v’, ‘\n’, '\0') as
delimiters. Then transforms the sub-strings into integer,
real or character values if possible. Otherwise strings are
returned.

anysplit (str s1, ...)(int|real|char|str v1, ...) Splits the file into
sub-strings using the string s1 (and so on) as delimiters.
Then transforms the sub-strings into integer, real or
character values if possible. Otherwise strings are
returned.

for (char :$ c; code C)(args) Iterates over all characters c of the file (using
copy assignment) and returns the evaluated code C for
each line.

For (char :$ c; code C)(args) Iterates over all characters c of the file
(traversing it backwards and using copy assignment) and
returns the evaluated code C for each line.

for (str :$ s; code C)(args) Iterates over all lines s of the file (using copy
assignment) and returns the evaluated code C for each
line.

For (str :$ s; code C)(args) Iterates over all lines s of the file (traversing it
backwards and using copy assignment) and returns the
evaluated code C for each line.

8.4.8 Directories
Syntax: dir
Meaning: Handle for directory (folder).
Type functions:

“” (str)(dir) Initialisation function. Returns a handle for a directory
with the specified name.

Object procedures:
“” (str d) Specifies the name of the directory with d.
remove Removes directory.
move (dir d) Renames directory to name d.
make Creates the directory.
copy (dir d) Copies directory to target directory d.
for (file :$ f; bool rec;
 str patt1,...; code C) Iterates over all files of the

directory and executes code C for each file.
Only files are considered which match any
of the patterns patt1 (and so on). The search is recursive
iff the argument rec is true.

For (file :$ f; bool rec;
 str patt1,...; code C) Iterates over all files of the

directory (traversing it backwards) and executes code C
for each file. Only files are considered which match any
of the patterns patt1 (and so on). The search is recursive
iff the argument rec is true.

for (dir :$ d; bool rec;
 str patt1,...; code C) Iterates over all directories of the

directory and executes code C for each directory.
Only directories are considered which match any
of the patterns patt1 (and so on). The search is recursive
iff the argument rec is true.

For (dir :$ d; bool rec;
 str patt1,...; code C) Iterates over all directories of the

directory (traversing it backwards) and executes code C
for each directory. Only directories are considered which

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 32 of 60

match any of the patterns patt1 (and so on). The search is
recursive iff the argument rec is true.

Object functions:
exists (bool) Returns true iff directory exists.
size (int) Returns size of directory (in bytes).
for (file :$ f; bool rec;
 str patt1,...; code C)(args) Iterates over all files of the

directory and returns the evaluated code C for each file.
Only files are considered which match any of the
patterns patt1 (and so on). The search is recursive iff the
argument rec is true.

For (file :$ f; bool rec;
 str patt1,...; code C)(args) Iterates over all files of the

directory (traversing it backwards) and returns the
evaluated code C for each file. Only files are considered
which match any of the patterns patt1 (and so on). The
search is recursive iff the argument rec is true.

for (dir :$ d; bool rec;
 str patt1,...; code C)(args) Iterates over all directories of the

directory and returns the evaluated code C for each
directory. Only directories are considered which match
any of the patterns patt1 (and so on). The search is
recursive iff the argument rec is true.

For (dir :$ d; bool rec;
 str patt1,...; code C)(args) Iterates over all directories of the

directory (traversing it backwards) and returns the
evaluated code C for each directory. Only directories are
considered which match any of the patterns patt1 (and so
on). The search is recursive iff the argument rec is true.

8.4.9 Lists
Syntax: list
Meaning: Ordered, polymorphic list of arbitrary length.
Type functions:

“” (any, ...)(list) Initialisation function. Inserts the arguments - either as
value or reference – at the end of the list to be returned.

Object procedures:
“” (any v1; ...) Initialisation procedure. Inserts argument v1 - either as

value or reference depending on the question if the type
of the transferred data is small or big (cf. section 8.2) – at
the end of the list (and so on).

set (int i1; any v1; ...) Sets element at position i1 to argument v1 – either value
or reference (and so on). The index (>= 0) is counted
from the beginning of the list.

Set (int i1; any v1; ...) Sets element at position i1 to argument v1 – either value
or reference (and so on). The index (>= 0) is counted
backwards from the end of the list.

ins (int i1; any v1; ...) Inserts argument v1 - either as value or reference - before
element at position i1 (and so on). The index (>= 0) is
counted from the beginning of the list.

Ins (int i1; any v1; ...) Inserts argument v1 - either as value or reference - after
element at position i1 (and so on). The index (>= 0) is
counted backwards from the end of the list.

ins0 (any v1; ...) Inserts argument v1 - either as value or reference – at the
beginning of the list (and so on).

Ins0 (any v1; ...) Inserts argument v1 - either as value or reference – at the
end of the list (and so on).

del0 Removes the first element.
Del0 Removes the last element.

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 33 of 60

del (int i1; ...) Removes element at position i1 (and so on). The index
(>= 0) is counted from the beginning of the list.

Del (int i1; ...) Removes element at position i1 (and so on). The index
(>= 0) is counted backwards from the end of the list.

flip Inverts the list.
sort Sorts the list in ascending order.
Sort Sorts the list in descending order.
sort (any :$ v; code C) Sorts the list in ascending order according to the

evaluated code C. For each element of the list an alias is
assigned to argument v. During this iteration the code
evaluation is done for the currently assigned element.

Sort (any :$ v; code C) Sorts the list in descending order according to the
evaluated code C. For each element of the list an alias is
assigned to argument v. During this iteration the code
evaluation is done for the currently assigned element.

for (any :$ v; code C) Iterates over all elements v of the list (using alias
assignment) and executes code C for each element.

For (any :$ v; code C) Iterates over all elements v of the list (traversing it
backwards and using alias assignment) and executes code
C for each element.

Object functions:
size (int) Returns current length of list.
get (int i1,...)(any v1,...) Returns content of element at position i1 – either

value or reference (and so on). The index (>= 0) is
counted from the beginning of the list.

Get (int i1,...)(any v1,...) Returns content of element at position i1 – either
value or reference (and so on). The index (>= 0) is
counted backwards from the end of the list.

get0 (any v) Returns content of first element – either value or
reference.

Get0 (any v) Returns content of last element – either value or
reference.

“[]” (int i1,...)(any :$ v1,...) Returns alias on element at position i1 (and
so on).

list (int i1,...)(list) Returns list of contents at position i1 – either valuess or
references (and so on).

find (any :$ v; code C)(args) Searches for the first element where code C
evaluates to the boolean value “true” and returns its
position. The index (>= 0) is counted from the beginning
of the list. Returns an empty list of
arguments if no element was found. For each element of
the list an alias is assigned to argument v. During this
iteration the code evaluation is done for the currently
assigned element.

Find (any :$ v; code C)(args) Searches for the first element where code C
evaluates to the boolean value “true” and returns its
position. The index (>= 0) is counted from the beginning
of the list. The search is done backwards from the end of
the list. Returns an empty list of
arguments if no element was found. For each element of
the list an alias is assigned to argument v. During this
iteration the code evaluation is done for the currently
assigned element.

find_all (any :$ v; code C)(args) Searches for all elements where code C
evaluates to the boolean value “true” and returns their
positions. The indices (>= 0) are counted from the
beginning of the list. Returns an empty list of
arguments if no element was found. For each element of
the list an alias is assigned to argument v. During this

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 34 of 60

iteration the code evaluation is done for the currently
assigned element.

Find_all (any :$ v; code C)(args) Searches for all elements where code C
evaluates to the boolean value “true” and returns their
positions. The indices (>= 0) are counted from
the beginning of the list. The search is done backwards
from the end of the list. Returns an empty list of
arguments if no element was found. For each element of
the list an alias is assigned to argument v. During this
iteration the code evaluation is done for the currently
assigned element.

args (any v1, ...) Returns the list of individual contents – either values or
references.

for (any :$ v; code C)(args) Iterates over all elements v of the list (using alias
assignment) and returns the evaluated code C for each
element.

For (any :$ v; code C)(args) Iterates over all elements v of the list (traversing
it backwards and using alias assignment) and returns the
evaluated code C for each element.

Procedural object operators:
“+=” (list a) Appends a to object (concatenation).

Functional operators:
“+” (list a,b)(list) Returns concatenation of a and b.
“<” (list a,b)(bool) Returns true iff a is smaller than b (i.e. the first n-1

elements are identical and the n-th element of a is smaller
than the n-th element of b, n >= 1).

“>” (list a,b)(bool) Returns true iff a is greater than b (i.e. the first n-1
elements are identical and the n-th element of a is greater
than the n-th element of b, n >= 1).

“<=” (list a,b)(bool) Returns true iff a is smaller than or equal to b.
“>=” (list a,b)(bool) Returns true iff a is greater than or equal to b.

8.4.10 Hash arrays
Syntax: hash
Meaning: Associative, polymorphic array (set of key-content pairs).
Type functions:

“” (any k1,c1, ...)(hash) Initialisation function. Inserts the key-content pair
(k1,c1) – either as values or references - (and so on) into
the hash array to be returned.

Object procedures:
“” (any k1,c1, ...) Initialisation procedure. Inserts the key-content pair

(k1,c1) – either as values or references depending on the
question if the type of the transferred data is small or big
(cf. Section 8.2) - (and so on).

ins (any k1,c1, ...) Inserts the key-content pair (k1,c1)
– either as values or references (and so on).

set (any k1,c1, ...) Sets the content of key k1 to c1 – either as value or
reference (and so on).

del (any k1,...) Deletes pair for key k1 (and so on).
for (any :$ k; code C) Iterates over all keys (using copy / reference assignment)

and executes code C for each key.
for (any :$ k,c; code C) Iterates over all pairs (key,content) – using copy /

reference assignment for keys and alias assignment for
contents) and executes code C for each pair.

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 35 of 60

For (any :$ k; code C) Iterates over all keys (using copy / reference assignment
and traversing the array backwards)
and executes code C for each key.

For (any :$ k,c; code C) Iterates over all pairs (key,content) – using copy /
reference assignment for keys and alias assignment for
contents and traversing the array backwards - and
executes code C for each pair.

sort Sorts the array with respect to the contents in ascending
order.

Sort Sorts the array with respect to the contents in descending
order.

sort (any :$ v; code C) Sorts the array in ascending order according to the
evaluated code C. For each content of the array an alias is
assigned to argument v. During this iteration the code
evaluation is done for the currently assigned content.

Sort (any :$ v; code C) Sorts the array in descending order according to the
evaluated code C. For each content of the array an alias is
assigned to argument v. During this iteration the code
evaluation is done for the currently assigned content.

sort_keys Sorts the array with respect to the keys in ascending
order.

Sort _keys Sorts the array with respect to the contents in descending
order.

sort_keys (any :$ v; code C) Sorts the array in ascending order according to
the evaluated code C. For each key of the array an
alias is assigned to argument v. During this iteration the
code evaluation is done for the currently assigned key.

Sort_keys (any :$ v; code C) Sorts the array in descending order according to
the evaluated code C. For each key of the array an alias is
assigned to argument v. During this iteration the code
evaluation is done for the currently assigned key.

Object functions:
size (int) Returns current number of pairs.
def (any k1, ...)(bool b1, ...) Returns true iff pair for key k1 exists (and so on).
get (any k1, ...)(any c1, ...) Returns content for key k1 - either as value or

reference (and so on).
“[]” (any k1,...)(any :$ c1,...) Returns alias on content of key k1 (and

so on). If the key does not yet exist, a pair with empty
content of type any is created.

keys (any k1, ...) Returns keys for all defined pairs - either as values or
references.

find (any :$ v; code C)(args) Searches for the first content where code C
evaluates to the boolean value “true” and returns its
key. Returns an empty list of
arguments if no content was found. For each content of
the array an alias is assigned to argument v. During this
iteration the code evaluation is done for the currently
assigned content.

Find (any :$ v; code C)(args) Searches for the first content where code C
evaluates to the boolean value “true” and returns its
key. The search is done backwards from the end of
the array. Returns an empty list of
arguments if no content was found. For each content of
the array an alias is assigned to argument v. During this
iteration the code evaluation is done for the currently
assigned content.

find_all (any :$ v; code C)(args) Searches for all contents where code C
evaluates to the boolean value “true” and returns their
keys. Returns an empty list of

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 36 of 60

arguments if no element was found. For each content of
the array an alias is assigned to argument v. During this
iteration the code evaluation is done for the currently
assigned content.

Find_all (any :$ v; code C)(args) Searches for all contents where code C
evaluates to the boolean value “true” and returns their
keys. The search is done backwards
from the end of the array. Returns an empty list of
arguments if no content was found. For each content of
the array an alias is assigned to argument v. During this
iteration the code evaluation is done for the currently
assigned content.

for (any :$ k; code C)(args) Iterates over all keys (using copy / reference
assignment) and returns the evaluated code C for each
key.

for (any :$ k,c; code C)(args) Iterates over all pairs (key,content) – using
copy / reference assignment for keys and alias assignment
for contents) and returns the evaluated code C for each
pair.

For (any :$ k; code C)(args) Iterates over all keys (using copy / reference
assignment and traversing the array backwards)
and returns the evaluated code C for each key.

For (any :$ k,c; code C)(args) Iterates over all pairs (key,content) – using
copy / reference assignment for keys and alias assignment
for contents and traversing the array backwards - and
returns the evaluated code C for each pair.

8.4.11 One-dimensional arrays
Syntax: array
Meaning: One-dimensional, polymorphic array of fixed length.
Type functions:

“” (int n; any, ...)(array) Initialisation function. Returns an array of length
n built from the optional arguments – either as values or
references.

Object procedures:
“” (int n; any v1,...,vn) Initialisation procedure. Allocates an array of length n

with undefined elements. The optional arguments
v1,...,vn are used to initialise the n elements.

set (int i1; any v1, ...) Sets the element with index i1 to argument v1 – either as
value or reference depending on the question if the type
of the transferred data is small or big (cf. Section 8.2) -
(and so on).

Set (int i1; any v1, ...) Sets the element with index i1 to argument v1 (and so
on). The index (>= 0) is counted backwards from the end
of the array.

del (int i1, ...) Deletes the element with index i1 (and so on).
Del (int i1, ...) Deletes the element with index i1 (and so on). The index

(>= 0) is counted backwards from the end of the array.
for (int :$ i; code C) Iterates over index of all defined elements and executes

code C for each index.
for (int :$ i; any :$ v; code C) Iterates over pairs (index, content) of all defined

elements – using alias assignment for the contents - and
executes code C for each pair.

For (int :$ i; code C) Iterates over index of all defined elements – in reverse
order - and executes code C for each index.

For (int :$ i; any :$ v; code C) Iterates over pairs (index, content) of all defined
elements - in reverse order and using alias assignment for
the contents - and executes code C for each pair.

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 37 of 60

sort Sorts the array with respect to the contents in ascending
order.

Sort Sorts the array with respect to the contents in descending
order.

sort (any :$ v; code C) Sorts the array in ascending order according to the
evaluated code C. For each content of the array an alias is
assigned to argument v. During this iteration the code
evaluation is done for the currently assigned content.

Sort (any :$ v; code C) Sorts the array in descending order according to the
evaluated code C. For each content of the array an alias is
assigned to argument v. During this iteration the code
evaluation is done for the currently assigned content.

Object functions:
size (int) Returns length of array.
def (int i1, ...)(bool b1, ...) Returns true iff elements with index i1 exists (and

so on).
get (int i1, ...)(any v1, ...) Returns element with index i1 – either as value or

reference (and so on).
Get (int i1, ...)(any v1, ...) Returns element with index i1 – either as value or

reference (and so on). The index (>= 0) is counted
backwards from the end of the array.

“[]” (int i1,...)(any :$ v1,...) Returns alias on element with index i1 (and
so on). If an element does not yet exist, the
element is created with empty content of type any.

keys (int i1, ...) Returns indices for all defined elements.
find (any :$ v; code C)(args) Searches for the first content where code C

evaluates to the boolean value “true” and returns its
position. The index (>= 0) is counted from the beginning
of the array. Returns an empty list of
arguments if no content was found. For each content of
the array an alias is assigned to argument v. During this
iteration the code evaluation is done for the currently
assigned content.

Find (any :$ v; code C)(args) Searches for the first content where code C
evaluates to the boolean value “true” and returns its
position. The index (>= 0) is counted from the beginning
of the array. The search is done backwards from the end
of the array. Returns an empty list of
arguments if no content was found. For each content of
the array an alias is assigned to argument v. During this
iteration the code evaluation is done for the currently
assigned content.

find_all (any :$ v; code C)(args) Searches for all contents where code C
evaluates to the boolean value “true” and returns their
positions. The indices (>= 0) are counted from the
beginning of the array. Returns an empty list of
arguments if no content was found. For each content of
the array an alias is assigned to argument v. During this
iteration the code evaluation is done for the currently
assigned content.

Find_all (any :$ v; code C)(args) Searches for all contents where code C
evaluates to the boolean value “true” and returns their
positions. The indices (>= 0) are counted from
the beginning of the array. The search is done backwards
from the end of the array. Returns an empty list of
arguments if no content was found. For each content of
the array an alias is assigned to argument v. During this
iteration the code evaluation is done for the currently
assigned content.

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 38 of 60

for (int :$ i; code C)(args) Iterates over index of all defined elements and
returns the evaluated code C for each index.

for (int :$ i; any :$ v; code C)(args) Iterates over pairs (index, content) of all
defined elements – using alias assignment for the
contents – and returns the evaluated code C for each pair.

For (int :$ i; code C)(args) Iterates over index of all defined elements – in
reverse order - and returns the evaluated code C for each
index.

For (int :$ i; any :$ v; code C)(args) Iterates over pairs (index, content) of all
defined elements - in reverse order and using alias
assignment for the contents - and returns the evaluated
code C for each pair.

8.4.12 Two-dimensional arrays
Syntax: array2
Meaning: Two-dimensional, polymorphic array of fixed length.
Type functions:

“” (int m,n; any, ...)(array2) Initialisation function. Returns an array of m rows
and n columns built from the optional arguments – either
as values or references.

Object procedures:
“” (int m,n; any v1,...,vmn) Initialisation procedure. Allocates an array of m rows and

n columns with undefined elements. The optional
arguments v1,..,vmn are used to initialise the m*n
elements.

set (int i1,i2; any v1, ...) Set the element with index (i1,i2) to argument
v1 – either as value or reference depending on the
question if the type of the transferred data is small or big
(cf. Section 8.2) - (and so on).

Set (int i1,i2; any v1, ...) Set the element with index (i1,i2) to argument
v1 (and so on). The indices (>= 0) are counted backwards
from the end of the array.

del (int i1,i2, ...) Deletes the element with index (i1,i2) (and so on).
Del (int i1,i2, ...) Deletes the element with index (i1,i2) (and so on). The

indices (>= 0) are counted backwards from the end of the
array.

for (int :$ i1,i2; code C) Iterates over index (i1,i2) of all defined elements and
executes code C for each index.

for (int :$ i1,i2; any :$ v; code C) Iterates over pairs (index, content) of all
defined elements – using alias assignment for the
contents - and executes code C for each pair.

For (int :$ i1,i2; code C) Iterates over index of all defined elements – in reverse
order - and executes code C for each index.

For (int<>i1,i2; any<>v; code C) Iterates over pairs (index, content) of all defined
elements - in reverse order and using alias assignment for
the contents - and executes code C for each
pair.

Object functions:
size (int,int) Returns number of rows and columns of array.
def (int i1,i2, ...)(bool b1, ...) Returns true iff elements with index (i1,i2)

exists (and so on).
get (int i1,i2, ...)(any v1, ...) Returns element with index (i1,i2) – either

as value or reference (and so on).
Get (int i1,i2, ...)(any v1, ...) Returns element with index (i1,i2) – either

as value or reference (and so on). The indices (>= 0) are
counted backwards from the end of the array.

“[]” (int i1,i2,...)(any :$ v1,...) Returns alias on element with index
(i1,i2) (and so on). If an element does not yet

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 39 of 60

exist, the element is created with empty content of type
any.

keys (int i1,i2, ...) Returns indices for all defined elements.
find (any :$ v; code C)(args) Searches for the first content where code C

evaluates to the boolean value “true” and returns its
position. The indices (>= 0) are counted from the
beginning of the array. Returns an empty list of
arguments if no content was found. For each content of
the array an alias is assigned to argument v. During this
iteration the code evaluation is done for the currently
assigned content.

Find (any :$ v; code C)(args) Searches for the first content where code C
evaluates to the boolean value “true” and returns its
position. The indices (>= 0) are counted from the
beginning of the array. The search is done backwards
from the end of the array. Returns an empty list of
arguments if no content was found. For each content of
the array an alias is assigned to argument v. During this
iteration the code evaluation is done for the currently
assigned content.

find_all (any :$ v; code C)(args) Searches for all contents where code C
evaluates to the boolean value “true” and returns their
positions. The indices (>= 0) are counted from the
beginning of the array. Returns an empty list of
arguments if no content was found. For each content of
the array an alias is assigned to argument v. During this
iteration the code evaluation is done for the currently
assigned content.

Find_all (any :$ v; code C)(args) Searches for all contents where code C
evaluates to the boolean value “true” and returns their
positions. The indices (>= 0) are counted from
the beginning of the array. The search is done backwards
from the end of the array. Returns an empty list of
arguments if no content was found. For each content of
the array an alias is assigned to argument v. During this
iteration the code evaluation is done for the currently
assigned content.

for (int :$ i1,i2; code C)(args) Iterates over index (i1,i2) of all defined elements
and returns the evaluated code C for each index.

for (int :$ i1,i2; any :$ v; code C)(args) Iterates over pairs (index,
content) of all defined elements – using alias assignment
for the contents - and returns the evaluated code C for
each pair.

For (int :$ i1,i2; code C)(args) Iterates over index of all defined elements – in
reverse order - and returns the evaluated code C for each
index.

For (int<>i1,i2; any<>v; code C)(args) Iterates over pairs (index,
content) of all defined elements - in reverse order and
using alias assignment for the contents - and returns the
evaluated code C for each pair.

8.4.13 Sets
Syntax: set
Meaning: Polymorphic set.
Type functions:

“” (any, ...)(set) Initialisation function. Inserts the arguments - either as
value or reference – into the set to be returned.

Object procedures:

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 40 of 60

“” (any v1, ...) Initialisation procedure. Inserts argument v1
– either as value or reference depending
on the question if the type of the transferred data is small
or big (cf. Section 8.2) - (and so on).

ins (any v1, ...) Inserts argument v1 – either as value or reference (and so
on).

del (any v1, ...) Deletes argument v1 (and so on).
for (any :$ v; code C) Iterates over all elements v (using alias assignment) and

executes code C for each element.
For (any :$ v; code C) Iterates over all elements v (using alias assignment and

traversing the set backwards) and executes code C for
each element.

sort Sorts the set in ascending order.
Sort Sorts the set in descending order.
sort (any :$ v; code C) Sorts the set in ascending order according to the

evaluated code C. For each element of the set an alias is
assigned to argument v. During this iteration the code
evaluation is done for the currently assigned element.

Sort (any :$ v; code C) Sorts the set in descending order according to the
evaluated code C. For each element of the set an alias is
assigned to argument v. During this iteration the code
evaluation is done for the currently assigned element.

Object functions:
size (int) Returns number of elements.
def (any v1, ...)(bool b1, ...) Returns true iff argument v1 exists (and so on).
args (any v1, ...) Returns the list of individual contents – either as values

or references.
find (any :$ v; code C)(args) Searches for the first element where code C

evaluates to the boolean value “true”. Returns an empty
list of arguments if no element was found. For each
element of the list an alias is assigned to argument v.
During this iteration the code evaluation is done for the
currently assigned element.

Find (any :$ v; code C)(args) Searches for the first element where code C
evaluates to the boolean value “true”. The search is done
backwards from the end of the set. Returns an empty list
of arguments if no element was found. For each element
of the set an alias is assigned to argument v. During this
iteration the code evaluation is done for the currently
assigned element.

find_all (any :$ v; code C)(args) Searches for all elements where code C
evaluates to the boolean value “true”. Returns an empty
list of arguments if no element was found. For each
element of the set an alias is assigned to argument v.
During this iteration the code evaluation is done for the
currently assigned element.

Find_all (any :$ v; code C)(args) Searches for all elements where code C
evaluates to the boolean value “true”. The search is done
backwards from the end of the set. Returns an empty list
of arguments if no element was found. For each element
of the set an alias is assigned to argument v. During this
iteration the code evaluation is done for the currently
assigned element.

for (any :$ v; code C)(args) Iterates over all elements v (using alias
assignment) and returns the evaluated code C for each
element.

For (any :$ v; code C)(args) Iterates over all elements v (using alias
assignment and traversing the set backwards) and returns
the evaluated code C for each element.

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 41 of 60

Procedural object operators:
“+=” (set m) Unions the object with set m.
“*=” (set m) Sets the object to the intersection with set m.
“-=” (set m) Sets the object to the delta set with set m (“object

without m”).
Functional operators:

“+” (set a,b)(set) Returns the union of set a and b.
“*” (set a,b)(set) Returns the intersection of sets a and b.
“-“ (set a,b)(set) Returns the delta set of sets a and b (“a without b”)
“<” (set a,b)(bool) Returns true iff a is subset of b.
“<=” (set a,b)(bool) Returns true iff a is subset of b or equal to b.
“>” (set a,b)(bool) Returns true iff b is subset of a.
“>=” (set a,b)(bool) Returns true iff b is subset of a or equal to a.

8.4.14 Errors
Syntax: error
Meaning: Object for error messages (also used for Nepal-internal errors).
Type functions:

“” (str)(error) Initialisation function. Returns an error with the specified
error text.

Object procedures:
“” (str) Initialisation procedure. Sets the error text.

Object functions:
file (str) Returns name of code file where the error was raised.
line (int) Returns line number in code file where error was raised.
error_type (str) Returns type of error („system“ or „user“, i.e. generated

by Nepal interpreter or by user).

8.4.15 Operators
Syntax: oper
Meaning: Unary or binary operator.
Type functions:

“” (str)(oper) Initialisation function. Returns an operator initialised by a
string.

Object procedures:
“” (str) Initialisation procedure using a string, e.g. “+” or “+=”.
exec (any v1, v2) Executes the binary operator. Possible operators are “=”,

“@”, “$”, “?”, “~”, “+=”, “-=”, “*=”, “/=”, “%=”, and
“^=”.

Object functions:
eval (any v)(any r) Evaluates the unary operator. Possible operators are “!”,

“+”, and “-“.
eval (any v1,v2)(any r) Evaluates the binary operator. Possible operators are “+”,

“-“, “*”, “/”, “%”, “^”, “**”, “..”, “.:”, “:.”, “||”, “&&”,
“<”, “>”, “<=”, “>=”, “==”, “!=”, “@@”, “!@”, “??” and
“!?”.

8.4.16 Programming codes
Syntax: code
Meaning: Nepal programming code.
Constants: Any block, see section 12. E.g. “{ outl(“hello world”) }”.
Object procedures:

“” (code) Initialisation procedure.
exec Executes the programming code.

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 42 of 60

Object functions:
eval (any r) Evaluates the programming code.

8.4.17 Arguments
Syntax: args
Meaning: List of arguments for procedures and functions.
Type functions:

The same as for type list.
Object procedures:

The same as for type list.
Object functions:

The same as for type list.
Procedural object operators:

The same as for type list.
Functional operators:

The same as for type list.
Functional object operators:

The same as for type list.

8.4.18 System data

Syntax: sys
Meaning: Represents the runtime system with access to the console.
Type procedures:

in (any :$ v1, ...) Reads the arguments sequentially from the console. The
current delimiters (set by set_in_spc()) are considered
accordingly. Pressing the ESC key stops the input (stands
for “end-of-file”).

sin (str s1,...; any :$ v1,...) Reads the arguments v1,... sequentially from the
console using the delimiters s1,... . The delimiters used
for procedure in() remain unchanged. Pressing the ESC
key stops the input (stands for “end-of-file”).

inl (any :$ v) Reads argument v until character ‘\n’ or the key ESC.
pin (any :$ v1, ...) Reads the packed arguments sequentially from the

console. Corresponds to procedure pout().Pressing the
ESC key stops the input (stands for “end-of-file”).

out (any v1, ...) Writes the arguments sequentially to the console. The
current format and separator (set by set_out_fmt() and
set_out_spc()) are considered accordingly.

outl (any v1, ...) Writes the arguments sequentially to the console and
finally appends the character ‘\n’. The current format and
separator (set by set_out_fmt() and set_out_spc()) are
considered accordingly.

sout (str s; any v1, ...) Writes the arguments sequentially to the console using
the separator s. The current format (set by set_out_fmt())
is considered accordingly. The separator used for
procedures out() and outl() remains unchanged.

soutl (str s; any v1...) Writes the arguments sequentially to the console using
the separator s, and finally appends the character ‘\n’.
The current format (set by set_out_fmt()) is considered
accordingly. The separator used for procedures out() and
outl() remains unchanged.

fout (str f; any v1, ...) Writes the arguments sequentially to the console using
the format f. The current separator (set by set_out_spc())
is considered accordingly. The format used for
procedures out() and outl() remains unchanged.

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 43 of 60

foutl (str f; any v1...) Writes the arguments sequentially to the console using
the format f, and finally appends the character ‘\n’. The
current separator (set by set_out_spc()) is considered
accordingly. The format used for procedures out() and
outl() remains unchanged.

fout (char c; str f; any v1, ...) Writes the arguments sequentially to the console
using the format f and filling character c. The current
separator (set by set_out_spc()) is considered
accordingly. The filling character and format used for
procedures out() and outl() remain unchanged.

foutl (char c; str f; any v1...) Writes the arguments sequentially to the console
using the format f and filling character c, and finally
appends the character ‘\n’. The current separator (set by
set_out_spc()) is considered accordingly. The filling
character and format used for procedures out() and outl()
remain unchanged.

fsout (str f; str s; any v1, ...) Writes the arguments sequentially to the console
using the format f and separator s. The format and
separator used for procedures out() and outl() remain
unchanged.

fsoutl (str f; str s; any v1...) Writes the arguments sequentially to the console
using the format f and separator s, and finally appends the
character ‘\n’. The format and separator used for
procedures out() and outl() remain unchanged.

fsout (char c; str f; str s; any v1, ...) Writes the arguments
sequentially to the console using the format f, filling
character c and separator s. The filling character, format
and separator used for procedures out() and outl() remain
unchanged.

fsoutl (char c; str f; str s; any v1...) Writes the arguments sequentially to the
console using the format f, filling character c, and
separator s, and finally appends the character ‘\n’. The
filling character, format and separator used for
procedures out() and outl() remain unchanged.

pout (any v1, ...) Writes the arguments sequentially to the console using a
packed format. Corresponds to procedure pin().

set_in_spc (str s1, ...) Sets the delimiter(s) for the reading functions, e.g. in()
and inl(). Normally no delimiter is defined.

set_in_spc Resets the delimiters for the reading functions, e.g. in()
and inl().

set_out_spc (str s) Sets the separator for the writing functions, e.g. out() and
outl(). Normally the separator is empty.

set_out_fmt (str f) Sets the format for the writing functions, e.g. out() and
outl().The filling character is set to blank (‘ ‘). Normally
the format is empty.

set_out_fmt (char c; str f) Sets the format f and filling character c for the writing
functions, e.g. out() and outl(). Normally the filling
character is blank and the format is empty.

system (str) Calls the specified system procedure from the operating
system.

proc (str name; any v1, ...) Calls the procedure name with the
arguments v1 (and so on).

del (any v1, ...) Destroys the objects v1 (and so on). The objects are no
longer defined, i.e. function def() returns true now. If the
objects contain references, the objects themselves are
destroyed, i.e. not the referenced objects. For destroying
the referenced objects, the object function del() of type
any is used.

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 44 of 60

clear (any v1, ...) Clears the objects v1 (and so on). The function empty()
returns true now. If the objects contain references, the
objects themselves are cleared, i.e. not the referenced
objects. For clearing the referenced objects, the object
function clear() of type any is used.

set_calc_time Resets the time for function get_calc_time() to 0.
if (bool; code a) Control structure, see section 11.4.1
if (bool; code a,b) Control structure, see section 11.4.1
switch (any; code) Control structure, see section 11.4.1
switch (code) Control structure, see section 11.4.1
for (code a,b,c,d) Control structure, see section 11.4.2
for (any :$ x; any y1,...;code) Control structure, see section 11.4.2
for (code) Control structure, see section 11.4.2
while (code a,b) Control structure, see section 11.4.2
continue (int) Control structure, see section 11.4.2
break (int) Control structure, see section 11.4.2
return (int) Control structure, see section 11.4.3
exit (int) Control structure, see section 11.4.4
throw (any) Control structure, see section 11.4.5
catch (any; code) Control structure, see section 11.4.5
set_cwd (str) Sets the current working directory (absolute path).

Type functions:
argc (int) Returns the number of arguments of the Nepal program

(including the code file).
argv (int i1, ...)(str s1, ...) Returns the arguments of the Nepal program

(including the code file) for index i1 >= 0 (and so on).
“argv(0)” yields the code file.

system (str)(int) Calls the specified system function from the operating
system and returns the result of this function.

func (str name; any v1, ...)(any, ...) Calls the function name with the
arguments v1 (and so on).

ref (any v1, ...)(bool b1, ...) Returns true iff the argument v1 is a reference
(and so on).

def (any v1, ...)(bool b1, ...) Returns true iff object v1 is defined (and so on).
If the objects contain references, the objects themselves
are analysed, i.e. the return values are always true. For
analysing the referenced objects, the object function def()
of type any is used.

empty (any v1, ...)(bool b1, ...) Returns true iff object v1 is empty (and so on).
For user-defined types, a comparison is made to a dummy
object for which a standard allocation and the default
initialisation (cf. section 8.5) have been applied. If the
objects contain references, the objects themselves
are analysed, i.e. the return values are always true. For
analysing the referenced objects, the object function
empty() of type any is used.

count (any, ...)(int) Returns the number of arguments.
min (any, ...)(any) Returns the minimum over all arguments. An operator

“<” must be defined for the type of every argument.
max (any, ...)(any) Returns the maximum over all arguments. An operator

“<” must be defined for the type of every argument.
sum (any, ...)(any) Returns the sum over all arguments.
prod (any, ...)(any) Returns the product over all arguments.
and (any, ...)(bool) Returns true iff all arguments are true.
or (any, ...)(bool) Returns true iff any argument is true.
get_cwd (str) Returns the current working directory (absolute path).
get_env (str)(str) Returns the value of the specified environment variable.

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 45 of 60

get_calc_time (real) Returns the calculation time in seconds since the start of
the Nepal program or the last call of set_calc_time().

8.5 User-defined types

Syntax: smalltype|bigtype <name> (<base_1>, ... ,<base_n>)
 {

 [[<module>::]<type> <var_1>,...,<var_n>
[(<const_1>,...,<const_n>)]; |

 proc <proc_name> ...; |
 func <func_name> ...; |
 smalltype|bigtype <type_name> ...;
]+

 }
with
<name>,<base_1>,..<base_n>,<module>,<var_1>,..<var_n>,<type_name> =

 ([a-z],[A-Z],_)([a-z],[A-Z],_,[0-9])+
<proc_name>,<func_name> = ([a-z],[A-Z],_)([a-z],[A-Z],_,[0-9])+ or

 “(<char>)+”
<const_1>,...,<const_n> See specification of constants for types bool, char, int,

real and str.
Condition: Name of built-in types cannot be used for a user-defined type.
Meaning: Collection of types, variables, procedures, and functions with optional, inherited user-defined base types. For
restrictions with respect to inheritance, see section 8.1. The optional constants are used as a basic initialisation for any
object of the specified type.
Type functions (built-in):

bases (args) Returns the names of all base types including the
current type.

vars (str b)(args) Returns the names of all type variables of the base
type b (can also be the current type). If the string b is
empty, the names of all type variables over all base types
including the current type are returned.

Type functions (optional, user-definable):
“” (any,...)(any) Initialisation function to generate an anonymous object.

Object procedures (optional, user-definable):
“” (any,...) Initialisation procedure executed with the

statement of the data definition.
in (str s) Procedure to read the data from string s, supporting the

reading functions for strings, files and the console.
Object functions (built-in):

get (str b,v)(any r) Returns the content of the object variable corresponding
to the type variable v of base type b – either a value or a
reference.

“[]” (str b,v)(any :$ r) Returns an alias on the object variable corresponding to
the type variable v of base type b.

Object functions (optional, user-definable):
out (str s) Function to write the data to string s,

supporting the writing functions for strings, files and
the console.

Functional object operators (built-in):

Functional object operators (optional, user-definable):
“<” (any a)(bool) Comparison operator. This supports the Nepal system

functions min() and max() as well as the procedures
sort() and Sort() for types list, args, set, hash and array.

Procedural object operators (optional, user-definable):
“+=” (any a) Operator for addition; this defines the binary

operator “+” implicitly.
__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 46 of 60

“-=” (any a) Operator for subtraction; this defines the binary
operator “-” implicitly.

“*=” (any a) Operator for multiplication; this defines the binary
operator “*” implicitly.

“/=” (any a) Operator for division; this defines the binary
operator “/” implicitly.

“%=” (any a) Operator for modulo; this defines the binary
operator “%” implicitly.

“^=” (any a) Operator for power; this defines the binary
operator “^” implicitly.

8.5.1 Modular concept for user-defined types
A procedure or function of a user-defined type can also be specified outside of the type definition. This can be done
either in the same program file or in another program file to be included. The syntax for “external” procedures and
functions is as follows:

proc <type_name>:<proc_name> [(<input>)] { <block> }
func <type_name>:<func_name> [(<input>)](<output>) { <block> }

8.5.2 Application-specific extension of user-defined types
For a Nepal program is it possible to specify exactly one relevant application (a user-defined type <app>) by using the
program option “-a <app>” for the interpreter. Within this type application-specific extensions for other user-defined
types can be specified in the following two ways:

1. A block consisting of additional types, variables, procedures or functions is added to another type.

Syntax: <type_name> += {
 [[<module>::]<type> <var_1>,...,<var_n>

 [= <const_1>,...,<const_n>]; |
 proc <proc_name> ...; |

 func <func_name> ...; |
 smalltype|bigtype <type_name> = ...;

]+
 }

Meaning: At the beginning of the program execution, the block right of the operator “+=” is copied into the type
left of the operator “+=”. Also extensions defined for base types of the relevant application are handled in the same
manner.

2. A type is added to another type.

Syntax: <type_name> += <type_name2>
Meaning: At the beginning of the program execution the type right of the operator “+=” is added to the list of base
types of the type left of the operator “+=”. The new base type is added at the beginning of the list in order to
prioritize this type over the existing base types. Also extensions defined for base types of the relevant application
are handled in the same manner.

9 Variables
For the definition of variables, see section 11.3.7.

9.1 User-defined variables
Syntax: ([a-z],[A-Z],_)([a-z],[A-Z],_,[0-9])+
Condition: Name of built-in variables cannot be used for a user-defined variable.
Meaning: Name of an accessible memory field.

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 47 of 60

9.2 Built-in variables
this Provides access to the current object. Can only be used inside an object procedure or

function.
true Returns a constant value for the built-in type bool.
false Returns a constant value for the built-in type bool.

10 Procedures and functions

10.1 User-defined procedures and functions

Syntax:
proc <proc_name> [(<input>)] { <block> }
func <func_name> [(<input>)] (<output>) { <block> }
with
<input>,<output> = [<module_1>::]<type_1> [:$] <var_11>,...,<var_1n>;...;
 [<module_n>::]<type_n> [:$] <var_n1>,...,<var_nn>
<module_1>,...,<module_n>,<type_1>,...,<type_n>,<var_11>,...,<var_nn> =
 ([a-z],[A-Z],_)([a-z],[A-Z],_,[0-9])+
<proc_name>,<func_name> = ([a-z],[A-Z],_)([a-z],[A-Z],_,[0-9])+ or

 “(<char>)+”

Conditions: The input arguments may contain 0, 1 or 2 variables of the built-in type args (for the sake of
uniqueness). For two variables of type args, only the two combinations “args a1, args :$ a2” and
“args :$ a1, args a2” are allowed - with no extra argument in between. Here the distinction
between arguments a1 and a2 is made according to the variability of the transferred data. All data
embodied by variables (from right to left and left to right) are assigned to the arguments a2 and a1 in
the first and second combination, respectively. The remaining data (left of the left-most variable data
and right of the right-most variable data) are linked to the arguments a1 and a2, respectively. For the
output arguments, there is no restriction with respect to the built-in type args.

Meaning: A procedure consists of an optional list of input arguments and a block to be executed. A function
consists of an optional list of input arguments, a mandatory list of output arguments and a block to be
executed. For the data transfer across the input arguments, three cases are distinguished:
1. Call-by-value: Here the input data are copied to the variables of the input arguments. This copy is
read-only, i.e. the transferred data must not be changed inside the procedure / function or recursively
called procedures / functions. Call-by-value is applied to all data of small types and constant data of
big types. These data are returned by functions not using the operator “:$” for the output arguments
(see below).
2. Call-by-reference: Here a reference on the input data is established on the variables of the input
arguments. This reference is read-only, i.e. the transferred data must not be changed inside the
procedure / function or recursively called procedures / functions. Call-by-reference is applied to all
data of variable big types. These data either reside on variables or are returned by functions using the
operator “:$” for the output arguments (see below).
3. Call-by-alias: Here the input arguments are considered as synonymous variables on the transferred
data. Therefore, a read-and-write access is supported inside the procedure / function. A writing access
always influences the original data. No restriction exists with respect to small or big types. Call-by-
alias is specified by using the operator “:$”.
For the output arguments, empty data are initially allocated on the program stack. Then the body
(block) of the procedure / function is executed which usually modifies the output arguments. The
question whether the resulting output arguments can be changed within the calling statement depends
on the usage of the operator “:$”. Without using this operator, the returned data are constant and
must not be changed. Otherwise a modification is possible.

10.2 Built-in procedures and functions

The built-in procedures and functions in the global scope are provided by the built-in type sys. Section 8.4.18 contains
a complete list of these elements.

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 48 of 60

11 Statements

11.1 Definition
A statement is an elementary program construct which can be executed. Possible occurrences of statements are:

• as part of a Nepal program (cf. section 3)
• as part of a block (cf. section 12)

11.2 Inclusion of program files

11.2.1 Standard inclusion

A Nepal program can be split into several files. The following statement is used to include a program file:

need "<code file to be included>"

When this statement is reached during program execution, all statements contained in this code file are executed
sequentially according to their location within the file. Moreover all types, variables, procedures and functions at the
outermost scope of the included file are accessible from the current program file.

Multiple files can be included by using a comma-separated list:

need "<code file 1>", “<code file 2>”, ...

Multiple inclusion of a certain file is eliminated automatically, i.e. only the first occurrence is relevant for execution.
For recursive inclusions the relevant occurrence is determined by a breath first – depth second search. Circular
inclusions are not allowed and will raise an error. Within a program file the need-statement must be located at the
outermost scope.

11.2.2 Module inclusion

To avoid name clashes, files can be included using a module specifier:

need <module>("<code file to be included>")
with
<module> = ([a-z],[A-Z],_)([a-z],[A-Z],_,[0-9])+

This Nepal statement attaches the specified module together with the module access operator “::” to every variable,
type, procedure and function at the outermost scope of the included file. Multiple inclusions of a certain file with
different modules are possible. This means that the included variables, types, procedures and functions are accessible
using any of these modules. However, only the “first occurrence” (due to the meaning described in section 11.2.1) is
relevant for program execution.

Multiple files can be included with a single module by using a comma-separated list:

need <module>("<code file 1>", “<code file 2>”, ...)

In the following example, a program file “b.npl” includes a program file “a.npl” with the module “mybasiclib” and
calls a procedure p() from the included program file.

a.npl:
proc p { outl(“execute p”) }

b.npl:
__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 49 of 60

need mybasiclib(”a.npl”);

mybasiclib::p(); # call p from program file a.npl

A recursive inclusion involving several modules leads to a concatenation of modules. The following example
demonstrates a recursive inclusion of two program files.

a.npl:
proc p { outl(“execute p”) }

b.npl:
need mybasiclib(”a.npl”)

c.npl:
need mylib(”b.npl”);

mylib::mybasiclib::p(); # call p from program file a.npl

11.2.3 Application-specific inclusion

For a Nepal program is it possible to specify exactly one relevant application (a user-defined type <app>) by using the
program option “-a <app>” for the interpreter. For this type an application-specific inclusion of program files can be
defined as follows:

need <app>:"<code file to be included>"

This means that the inclusion of the program file is only performed if the specified type matches either with the
relevant application or a base type of the type corresponding to the relevant application. To determine the necessary
inclusions, the Nepal interpreter performs several passes: Firstly all unconditional inclusions are executed. Then the
base types of the type corresponding to the relevant application are calculated. Finally all conditional inclusions with
matching types are executed.

Multiple files can be included by using a comma-separated list:

need <app>:"<code file 1>", <app>:“<code file 2>”, ...

A mixture of standard, module and application-specific inclusions is possible for every need-statement, for example:

 need “<code file 1>”, <module1>(<app>:"<code file 2>")

11.3 Procedural operators

The following table shows the priority of the procedural and functional operators. The higher the priority, the stronger
is the binding between the corresponding operands. For operators with the same priority the grouping of operands is
from left to right. To overwrite the built-in priority of operators, the grouping of operands can be forced by use of
round brackets. For example, the operands “1” and “2” are linked together within the expression “(1+2)*3” although
the operator “*” has higher priority than the operator “+”.

Priority Operators Type of operator
1)(){ }(}{ procedural
2 ; procedural
3 :$ ‘ ‘ (e.g. the operator in between procedural

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 50 of 60

“int n”)
4 = @ $? ~ += -= *=

/= %= ^=
procedural

5 , procedural
6 || functional
7 && functional
8 < > == != <= >=

@@ !@ ?? !?
functional

9 | procedural
10 & procedural
11 .. .: :. ** functional
12 +(binary) -(binary) functional
13 * / % functional
14 ^ functional
15 ! +(unary) -(unary) functional
16 . procedural or functional
17 : procedural or functional
18 :: procedural or functional

The following sections describe the procedural operators. The functional operators are described in section 13.5.

11.3.1 Assignments
In the following assignments the data object on the left-hand side is either a variable, an object variable, the built-in
variable this or an alias function. On the right-hand side there is always an expression.

11.3.1.1 Copy
Syntax: <obj> = <expr>
Meaning: After clearing the data object, the value of the expression is (deeply) copied to the object. Normally the types
must match exactly. The exception is that the (initial) object is of type any. In this case, the assignment is always
possible. If the object contains a reference, the object itself is overwritten (not the object where the reference is pointing
to). If the object contains an alias, the object is overwritten where the alias is pointing to. If the expression contains a
reference or alias, the value of the object is copied where the chain of aliases/references is pointing to.

11.3.1.2 Reference
Syntax: <obj> @ <expr>
Meaning: After clearing the data object, a reference on the expression is created at the object. Normally the types must
match exactly. The exception is that the (initial) object is of type any. In this case, the assignment is always possible. If
the object contains a reference, the object itself is overwritten (not the object where the reference is pointing to). If the
object contains an alias, the object is overwritten where the alias is pointing to. If the expression contains a reference or
alias, a reference on the object is established where the chain of aliases/references is pointing to. Concatenated
references are not allowed. References must not point to objects containing aliases. But aliases may point to objects
containing references.

11.3.1.3 Alias
Syntax: <obj> $ <expr>
Meaning: After clearing the data object, an alias on the expression is created at the object. Normally the types must
match exactly. The exception is that the (initial) object is of type any. In this case, the assignment is always possible. If
the object contains a reference, the object itself is overwritten (not the object where the reference is pointing to). If the
object contains an alias, the object is overwritten where the alias is pointing to. If the expression contains a reference,
an alias on the object itself is established (not the object where the reference is pointing to). If the expression contains
an alias, an alias on the object is established where the chain of aliases is pointing to. The only possible concatenation
of aliases occurs when the (implicitly generated) alias contained in the input argument of a procedure / function using
the operator “:$” is pointing to an object containing a “normal” alias. Aliases may point to objects containing
references. But references must not point to objects containing aliases.

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 51 of 60

11.3.1.4 Copy or Reference
Syntax: <obj> ? <expr>
Meaning: After clearing the data object, either a copy or a reference on the expression is created on the object
depending on the question if the expression contains a value or a reference. Normally the types must match exactly.
The exception is that the (initial) object is of type any. In this case, the assignment is always possible. If the object
contains a reference, the object itself is overwritten (not the object where the reference is pointing to). If the object
contains an alias, the object is overwritten where the alias is pointing to. If the expression contains a reference or alias,
a reference on the object is established where the chain of aliases/references is pointing to.

11.3.1.5 Move
Syntax: <obj> ~ <expr>
Meaning: After clearing the data object, the value of the expression is moved to the object. The expression is then
undefined. Normally the types must match exactly. The exception is that the (initial) object is of type any. In this case,
the assignment is always possible. If the object contains a reference, the object itself is overwritten (not the object
where the reference is pointing to). If the object contains an alias, the object is overwritten where the alias is pointing
to. If the expression is a reference or alias, the object is moved where the chain of aliases/references is pointing to.

11.3.1.6 Multiple Assignment
Instead of a single assignment between exactly two variables, also multiple assignments in the following form can be
used:

<obj_1>,...,<obj_n> <assignment_operator> <expr_1>,...,<expr_m>

Here MIN(m,n) evaluations and assignments are performed sequentially, i.e. firstly the evaluation of <expr_1> and the
assignment from <expr_1> to <obj_1>, then the evaluation of <expr_2> and the assignment from <expr_2> to
<obj_2>, and so on.

11.3.2 Mathematical operators (for types int, real, str, set and list)

“+=” (any a1,..,an; any b1,..,bm) Addition (for types list and str: concatenation; for type set:
union), optionally with multiple arguments.

“-=” (any a1,..,an; any b1,..,bm) Subtraction (for type set: delta set), optionally with
multiple arguments.

“*=” (any a1,..,an; any b1,..,bm) Multiplication (for type set: intersection), optionally with
multiple arguments.

“/=” (any a1,..,an; any b1,..,bm) Division, optionally with multiple arguments.
“%=” (any a1,..,an; any b1,..,bm) Modulo, optionally with multiple arguments.
“^=” (any a1,..,an; any b1,..,bm) Power, optionally with multiple arguments.

11.3.3 Structural operators
“)(“ (any a,b) Pair of input or output arguments (of any type except code)
“){“ (any a; code b) Pair of input or output arguments
“}(“ (code a; any b) Pair of input or output arguments
“}{“ (code a,b) Pair of input or output arguments
“;” Sequence of statements or input/output arguments
“,” Sequence of variables or expressions
“‘ ‘” Definition of variable, e.g. operator in between “int n”; see also section

11.3.7.
“:$” Input arguments using call-by-alias or output arguments of an alias

function
“|” Sequence of variables or expressions acting as logical alternatives on

left/right-hand side of comparison operator. For example, “a | b == c”
stands for “a == c || b == c”.

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 52 of 60

“&” Sequence of variables or expressions acting as logical conditions on
left/right-hand side of comparison operator. For example, “a & b == c”

stands for “a == c && b == c”.

11.3.4 Data access operator
“.” (any a1, …, am; proc b1, …, bn) Executes object procedures in the order a1.b1,

a1.b2, …, a1.bn, a2.b1, …, a2.bn, …, am.b1, …, am.bn. For more than
one element round brackets have to be used, e.g. “(a1,a2).(b1,b2)”.

11.3.5 Type access operator
“:” (type a; proc b) Executes procedure b of type a

11.3.6 Module access operator
“::” (module a; proc b) Executes procedure b of module a

11.3.7 Definitions of variables and initialisations
Syntax (First form): [<module>::]<type> <var1>, <var2>, ... ;
Meaning: The variables var1, var2 etc. are defined for the given type in the current scope.
Syntax (Second form with assignment):

[<module>::]<type> <var1>, <var2>, ... <assignment_operator> <expr1>,
<expr2>, ...;

Meaning: The variables var1, var2 etc. are defined for the given type in the current scope. The (multiple) assignment is
then performed while evaluating the expressions on the right-hand side (for the order of assignments and evaluations,
see section 11.3.1.6).
Syntax (Third form with initialisation procedure):

[<module>::]<type> <var1>(any a11,...), <var2>(any a21,...), ...;
Meaning: The variables var1, var2 etc. are defined for the given type in the current scope. The object procedures “”(any
a,...) are executed in the order of the given sequence of variables.
Syntax (Forth form with object procedure):

[<module>::]<type> <var1>.p1(any a11,...), <var2>.p2(any a21,...), ...;
Meaning: The variables var1, var2 etc. are defined for the given type in the current scope. The object procedures
p1(any a11,...), p2(any a21,...) etc. are executed in the order of the given sequence of variables.

The first, third and forth form can be mixed arbitrarily.

11.4 Control structures

The following statements are in fact type procedures of the built-in type sys (cf. section 8.4.18). This has the advantage
that e.g. the built-in for-loop can be addressed within a user-defined for-loop of a user-defined type. The example
below demonstrates this feature.

bigtype test {

proc for (code C) { sys:for(C) }
}

11.4.1 Branches
• if-else

Syntax: if(<bool_expr>) { <block_1> } [{ <block_2> }]
Meaning: The boolean expression is evaluated. If the value is true, block 1 is executed, otherwise block 2.

• switch with variable
__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 53 of 60

Syntax: switch(<obj>) { case (<expr_11>,...,<expr_1m>) { <block_1> }; ...
 case (<expr_n1>,...,<expr_nm>) { <block_n> };
 [case { <block_0> }] }

Meaning: The expressions are evaluated sequentially. If a value matches with the value of the data object, the
corresponding block is executed, and the switch-statement is quitted. The optional case-block without an expression is
executed if no match with any expression exists.

• switch without variable

Syntax: switch { case (<bool_expr_11>,...,<bool_expr_1m>) { <block_1> }; ...
 case (<bool_expr_n1>,...,<bool_expr_nm>) { <block_n> };
 [case { <block_0> }] }

Meaning: The boolean expressions are evaluated sequentially. If a value is true, the corresponding block is executed,
and the switch-statement is quitted. The optional case-block without an expression is executed, if no expression has the
value true.

11.4.2 Loops
• for
Syntax (First form): for {<block_0>}{<bool_expr>}{<block_1>} { <block_2> }
Meaning: Firstly block 0 is executed. As long as the boolean expression has the value true, block 2 is executed. If block
2 is executed completely (i.e. no break-, exit- or return- statement is contained), block 1 is executed before the repeated
evaluation of the boolean expression.

Syntax (Second form): for (any :$ x, any y1, ...) { <block> }
Meaning: The arguments y1 (and so on) are evaluated and assigned to argument x sequentially. After every assignment
the block is executed.

Syntax (Third form): for { <block> }
Meaning: Endless loop.

• while
Syntax: while {<bool_expr>} { <block> }
Meaning: As long as the boolean expression has the value true, the block is executed.

• continue
Syntax: continue(int n)
Meaning: (n-1) nested loops are quitted, and for the n-th loop the program jumps to the end of the block.

• break
Syntax: break(int n)
Meaning: n nested loops are quitted.

11.4.3 Termination of procedures or functions
Syntax: return(int n)
Meaning: n nested procedures or functions are quitted.

11.4.4 Termination of Nepal programs
Syntax: exit(int n)
Meaning: The current program is quitted, and the value “n” is transferred to the operating system (calling the system
function “exit(int)”). This procedure is always executed, even if an exception has been thrown (cf. section 11.4.5).

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 54 of 60

11.4.5 Exceptions
Syntax:

throw (<expr>)
catch (<obj>) { <block> }

Meaning: A user-defined exception is raised with the throw-statement. All subsequent statements are skipped until a
suitable catch-statement or a procedure exit() is reached. When raising the exception inside a loop, the loop is quitted at
the end of the block. If the type of the catch-object is identical to the type of the thrown value, the catch-block is
executed, and no further statements are skipped. A catch-object of (initial) type any catches thrown values of any type.
The called exit-procedure can be either the built-in procedure (cf. section 11.4.4) or a user-defined procedure (with
arbitrary arguments). If a Nepal-internal error occurs, e.g. an infeasible index is used for objects of type array, then an
exception of type error is thrown.

11.5 Procedure calls

11.5.1 General procedures
Syntax: [<module>::]p(<expr1>,...,<exprn>)
Meaning: After evaluating the expressions expr1 to exprn, these values are passed to the procedure as input arguments,
and the procedure is executed. Optionally, a module can be specified to address procedures of the corresponding
program file.

11.5.2 Object procedures
Syntax (First form):

 o.p(<expr1>,...,<exprn>) or o.<base type>:p(<expr1>,...,<exprn>)
Meaning: After evaluating the expressions expr1 to exprn, these values are passed as input arguments to the procedure
of the data object o, and then the procedure is executed. The above-mentioned syntax is used outside of object
procedures. When the built-in variable this (cf. section 9.2) is used for data object o, this syntax can also be used
inside of object procedures. Optionally, a base type can be specified to address procedures of this type.

Syntax (Second form):
p(<expr1>,...,<exprn>) or <base type>:p(<expr1>,...,<exprn>)

Meaning: After evaluating the expressions expr1 to exprn, these values are passed as input arguments to the procedure
of the current data object, and then the procedure is executed. The above-mentioned syntax is used inside of object
procedures. Optionally, a base type can be specified to address procedures of this type.

11.5.3 Type procedures
Syntax: [<module>::]<type>:p(<expr1>,...,<exprn>)
Meaning: After evaluating the expressions expr1 to exprn, these values are passed to the type procedure as input
arguments, and then the procedure is executed. The above-mentioned syntax is used inside and outside of object
procedures. Optionally, a module can be specified to address procedures of the corresponding program file.

12 Blocks

12.1 Definition

Syntax: { [<statement>] (; <statement>)+ }
Meaning: The statements are executed sequentially. Executing an empty block has no effect. Evaluating an empty
block raises an error. Every block builds an own scope (cf. Section 6) and is a constant object of the built-in type code
(cf. section 8.4.16). Possible occurrences of blocks are:

• As input arguments of procedures or functions, e.g. “while { a < b } { c += d }”
• As an expression, e.g. the right-hand side of code “c = { 2 < 3 }”
• As body of a type definition
• A body of a procedure or function definition
• As body of a type extension, e.g. “<type_name> += { <type extension> }” (cf. section 8.5.2).

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 55 of 60

12.2 Syntactical sugar

If a block consists of a single statement and follows a closing (round) bracket, it can be written with a final semicolon
instead of brackets. This helps to spare curly brackets. For example, the branch statement

if(a < b) { c = d }

can also be written as

if(a < b) c = d;

In this way not only if-statements but also case-, for- and catch-statements may be written in a simplified manner.

This simplification can be applied even multiple times for nested blocks. For example, the following double loop

for(i,1..10)
{
 for(j,1..10)
 {
 n += i*j
 }
}

can also be written as

for(i,1..10)
 for(j,1..10)
 n += i*j;

To spare semicolons the interpreter appends a semicolon implicitly after the end of each block. For example, the
following code

bigtype test { int n};
test t

can be also written as

bigtype test { int n}
test t

13 Expressions

13.1 Definition

Expressions are constructs of a Nepal program which can be evaluated. The following occurrences of expressions are
possible:

• In combination with operators to build another expression
• The right-hand side of an assignment
• As data transferred to input arguments for procedures and functions

13.2 Access of variables

13.2.1 General variables
Syntax: [<module>::]<var>

with
<module>,<var> = ([a-z],[A-Z],_)([a-z],[A-Z],_,[0-9])+

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 56 of 60

Meaning: The result of the evaluation is a copy of the value of the addressed variable. If the variable contains a
reference, the value of that variable is copied where the reference is pointing to. Optionally, a module can be specified
to address variables of the corresponding program file.

13.2.2 Object variables
Syntax (First form): d.<var> or o.<base type>:<var>

 with
 <var>,<base_type> = ([a-z],[A-Z],_)([a-z],[A-Z],_,[0-9])+

Meaning: The result of the evaluation is a copy of the value of the addressed variable as part of the given data object o.
If the variable contains a reference, the value of that variable is copied where the reference is pointing to. The above-
mentioned syntax is used outside of object procedures or functions. When the built-in variable this (cf. section 9.2) is
used for data object o, this syntax can also be used inside of object procedures or functions. Optionally, a base type can
be specified to address variables of this type.

Syntax (Second form): <var> or <base type>:<var>
 with
 <var>,<base_type> = ([a-z],[A-Z],_)([a-z],[A-Z],_,[0-9])+

Meaning: The result of the evaluation is a copy of the value of the addressed variable as part of the current data object.
If the variable contains a reference, the value of that variable is copied where the reference is pointing to. The above-
mentioned syntax is used inside of object procedures or functions. Optionally, a base type can be specified to address
variables of this type.

13.3 Function calls

13.3.1 General functions
Syntax: [<module>::]f(<expr1>,...,<exprn>)
Meaning: After evaluating the expressions expr1 to exprn, these values are passed to the function as input arguments,
and the function is executed. The evaluated output arguments of the function are the result of the expression.
Optionally, a module can be specified to address functions of the corresponding program file.

13.3.2 Object functions
Syntax (First form):

 o.f(<expr1>,...,<exprn>) or o.<base_type>:f(<expr1>,...,<exprn>)
Meaning: After evaluating the expressions expr1 to exprn, these values are passed as input arguments to the function
of the data object o, and then the function is executed. The evaluated output arguments of the function are the result of
the expression. The above-mentioned syntax is used outside of object functions. When the built-in variable this (cf.
section 9.2) is used for data object o, this syntax can also be used inside of object functions. Optionally, a base type can
be specified to address functions of this type.

Syntax (Second form):
f(<expr1>,...,<exprn>) or <base type>:f(<expr1>,...,<exprn>)

Meaning: After evaluating the expressions expr1 to exprn, these values are passed as input arguments to the function
of the current data object, and then the function is executed. The evaluated output arguments of the function are the
result of the expression. The above-mentioned syntax is used inside of object functions. Optionally, a base type can be
specified to address functions of this type.

13.3.3 Type functions
Syntax: [<module>::]<type>:f(<expr1>,...,<exprn>)
Meaning: After evaluating the expressions expr1 to exprn, these values are passed as input arguments to the type
function, and then the function is executed. The evaluated output arguments of the function are the result of the
expression. The above-mentioned syntax is used inside and outside of object functions. Optionally, a module can be
specified to address functions of the corresponding program file.

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 57 of 60

13.4 Conditional expressions
The following expression is in fact a type function of the built-in type sys (cf. section 8.4.18).

• if

Syntax: if (<bool_expr>) {<expr_1_1>,...,<expr_1_n>} {<expr_2_1>,...,<expr_2_n>}
Meaning: The boolean expression is evaluated. If the value is true, the list of arguments expr_1_i, i = 1...n, is evaluated,
otherwise the list of arguments expr_2_i, i = 1...n.

13.5 Functional operators

The following sections describe the functional operators. The procedural operators as well as the priorities of all
operators are described in section 11.3.

13.5.1Boolean operators
“!” (bool a)(bool) Logical negation
“&&” (bool a,b)(bool) Logical and
“||” (bool a,b)(bool) Logical or

13.5.2 Operators for comparison
“==” (any a,b)(bool) Equality with respect to value
“!=” (any a,b)(bool) Inequality with respect to value
“@@” (any a,b)(bool) Equality with respect to reference
“!@” (any a,b)(bool) Inequality with respect to reference
“??” (any a,b)(bool) Equality with respect to value or reference
“!?” (any a,b)(bool) Inequality with respect to value or reference
“<” (any a,b)(bool) Smaller (for type set: subset)
“>” (any a,b)(bool) Greater (for type set: subset)
“<=” (any a,b)(bool) Smaller or equal (for type set: subset or equality)
“>=” (any a,b)(bool) Greater or equal (for type set: subset or equality)

13.5.3 Mathematical operators (for types int, real, str, set, and list)
“+” (any a,b)(any) Addition (for types list, str: concatenation; for type set: union)
“-” (any a,b)(any) Subtraction (for type set: delta set)
“*” (any a,b)(any) Multiplication (for type set: intersection)
“/” (any a,b)(any) Division
“%” (any a,b)(any) Modulo
“^” (any a,b)(any) Power

13.5.4 Range operators
“..” (int|char a,b)(list) Range of integer or character values (ascending or descending)
“.:” (int|char a,b)(list) Range of integer or character values (only ascending)
“:.” (int|char a,b)(list) Range of integer or character values (only descending)
“**” (any a; int n)(any b1, ..., bn) Repetition of values (value a is repeated n-

times).

13.5.5 Data access operator
“.” (any a1,...,am; func|any b1,...,bn) Executes object functions or

evaluates object variables in the order a1.b1,
a1.b2, …, a1.bn, a2.b1, …, a2.bn, …, am.b1, …, am.bn..
For more than one element, round brackets have to be used, e.g.
“(a1,a2).(b1,b2)”.

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 58 of 60

13.5.6 Type access operator
“:” (type a; func b) Executes function b of type a

13.5.7 Module access operator
“::” (module a; func b) Executes function b of module a

13.6 Constants

Constants exist for the built-in types bool, int, real, char, str and code (see section 8.4).

14 Glossary

Alias A pointer to a data object. Assignments to aliases apply to the objects where they are
pointing to (in contrast to references). Aliases are generated with the assignment operator
“$” or when data objects are transferred to input arguments of procedures or functions
using call-by-alias convention. Moreover aliases are returned from alias functions.

Alias function Function returning an alias on a data object (by using the operator “:$” for the output
arguments).

Argument A parameter of a procedure, function or program.
Base type A type whose elements are inherited completely by types derived from this type. All

elements can be accessed and used by the derived types.
Basic initialisation An initialisation applied to a data object just after its creation.
Big type Constant / variable data of big types as input arguments of procedures or functions are

copied by value / reference. When using these data as keys of hash arrays, they are compared
with respect to their value / (memory) address.

Block A list of statements to be executed sequentially.
Call-by-alias Interpret the input arguments of procedures or functions as synonymous variables for the

transferred data (i.e. supporting read-and-write access).
Call-by-reference Apply a constant copy to the address of the transferred data for input arguments of

procedures or functions.
Call-by-value Apply a constant copy to the values of the transferred data for input arguments of

procedures or functions.
Comment Text within a program for the purpose of documentation. Comments are ignored by the

interpreter.
Constant A memory field whose value cannot be changed during program execution.
Definition A specification of a type, variable, procedure or function.
Expression A program construct which can be evaluated.
Function A program construct consisting of an executable block, optional input arguments and

mandatory output arguments.
Functional operator Function with one or two input arguments, represented by a special symbol,

e.g. “==” for comparison of two objects.
Inclusion Embedding program files into another program file.
Interpreter A software for executing a program directly from the source code, without compilation

into machine-readable code.
Module A specifier for inclusion of program files.
Object A concrete instance (data collection) of a certain type.
Object function A function of a type which can be called only by a certain object. It calls other

functions or procedures of the object or does access variables of the object.
Otherwise it would be a type function of the corresponding type.

Object procedure A procedure of a type which can be called only by a certain object. It calls other
functions or procedures of the object or does access variables of the object. Otherwise it
would be a type procedure of the corresponding type.

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 59 of 60

Object variable A variable of a type which can be accessed only by a certain object.
Operand Argument of an operator.
Operator Function or procedure with one or two input arguments, represented by a special symbol,

e.g. “+” for addition of two objects.
Polymorphism The possibility to keep data objects of different types within another data object, e.g. within a

set or list.
Procedural object operator Object procedure with zero or one input argument which can be applied only by a

certain object and is represented by a special symbol, e.g. “+=” for addition. The
first argument of the operator is the object itself.

Procedure A program construct consisting of an executable block and optional input arguments.
Program A list of definitions, statements, and comments.
Program argument Parameter of a program.
Program option A setting to control the behaviour of a program, e.g. the specification of directories for the

inclusion of program files.
Reference A pointer to a data object. Assignments to references do not apply to the objects where they

are pointing to, but to the objects containing the references (in contrast to aliases).
References are generated with the assignment operator “@” or when data objects are
transferred to input arguments of procedures or functions using call-by-reference convention.

Scope A connected part of a program with definitions of types, variables, procedures or functions.
For a certain scope, the defined names and signatures have to be unique per type
of construct.

Signature A string built from the name and the input arguments of a procedure or function.
Small type Data of small types as input arguments are copied by value. When using

these data as keys of hash arrays, they are compared with respect to their value.
Statement An elementary program construct which can be executed.
Symbol table A table to access all types, variables, procedures and functions of a certain scope.
Syntax The specification of a feasible program.
Type A collection of variables, procedures, functions, nested types and base types (= the elements

of the type).
Type function A function of a type which can be called by objects of this type as well as

without a concrete object. The function does not call object procedures or functions and does
not access object variables.

Type procedure A procedure of a type which can be applied by objects of this type as well as
without a concrete object. The procedure does not use object functions or procedures and
does not access object variables.

Type variable A variable of a type.
Value The result of the evaluation of a data object.
Variable A memory field accessible for reading and writing via a corresponding name. The size of the

memory field is determined by the corresponding type.

__
Nepal 1.0 – Reference Manual, V1 Copyright © 2010 Karl-Heinz Erhard. All rights reserved. Page 60 of 60

	Version history
	1 Installation
	2 Starting the interpreter
	3 Programs
	4 Program execution
	5 Comments
	5.1 Word comment
	5.2 Line comment
	5.3 General comment

	6 Scopes
	7 Data model
	7.1 Life cycle of data objects
	7.2 State of data objects
	7.3 Allocation of data objects
	7.4 Initialisation of data objects
	7.5 Access of data objects
	7.6 Data contents
	7.7 Data assignments
	7.8 Data comparison
	7.9 Data Input and Output
	7.9.1 Data output
	7.9.2 Data input

	8 Types
	8.1 Inheritance
	8.2 Small and big types
	8.3 Access of type procedures and functions
	8.4 Built-in types
	8.4.1 Logical data
	8.4.2 Numerical data (integer)
	8.4.3 Numerical data (fix point)
	8.4.4 Characters
	8.4.5 Strings
	8.4.6 Polymorphic data
	8.4.7 Files
	8.4.8 Directories
	8.4.9 Lists
	8.4.10 Hash arrays
	8.4.11 One-dimensional arrays
	8.4.12 Two-dimensional arrays
	8.4.13 Sets
	8.4.14 Errors
	8.4.15 Operators
	8.4.16 Programming codes
	8.4.17 Arguments
	8.4.18 System data

	8.5 User-defined types
	8.5.1 Modular concept for user-defined types
	8.5.2 Application-specific extension of user-defined types

	9 Variables
	9.1 User-defined variables
	9.2 Built-in variables

	10 Procedures and functions
	10.1 User-defined procedures and functions
	10.2 Built-in procedures and functions

	11 Statements
	11.1 Definition
	11.2 Inclusion of program files
	11.2.1 Standard inclusion
	11.2.2 Module inclusion
	11.2.3 Application-specific inclusion

	11.3 Procedural operators
	11.3.1 Assignments
	11.3.1.1 Copy
	11.3.1.2 Reference
	11.3.1.3 Alias
	11.3.1.4 Copy or Reference
	11.3.1.5 Move
	11.3.1.6 Multiple Assignment

	11.3.2 Mathematical operators (for types int, real, str, set and list)
	11.3.3 Structural operators
	11.3.4 Data access operator
	11.3.5 Type access operator
	11.3.6 Module access operator
	11.3.7 Definitions of variables and initialisations

	11.4 Control structures
	11.4.1 Branches
	11.4.2 Loops
	11.4.3 Termination of procedures or functions
	11.4.4 Termination of Nepal programs
	11.4.5 Exceptions

	11.5 Procedure calls
	11.5.1 General procedures
	11.5.2 Object procedures
	11.5.3 Type procedures

	12 Blocks
	12.1 Definition
	12.2 Syntactical sugar

	13 Expressions
	13.1 Definition
	13.2 Access of variables
	13.2.1 General variables
	13.2.2 Object variables

	13.3 Function calls
	13.3.1 General functions
	13.3.2 Object functions
	13.3.3 Type functions

	13.4 Conditional expressions
	13.5 Functional operators
	13.5.1 Boolean operators
	13.5.2 Operators for comparison
	13.5.3 Mathematical operators (for types int, real, str, set, and list)
	13.5.4 Range operators
	13.5.5 Data access operator
	13.5.6 Type access operator
	13.5.7 Module access operator

	13.6 Constants

	14 Glossary

